Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 28 dokumen yang sesuai dengan query
cover
Fakultas Teknik Universitas Indonesia, 2001
TA2573
UI - Tugas Akhir  Universitas Indonesia Library
cover
Millati Indah
"Salah satu misi pembangunan adalah mewujudkan kualitas hidup manusia Indonesia yang tinggi, maju, dan sejahtera, dengan salah satu agenda prioritasnya meningkatkan kualitas hidup manusia Indonesia. Untuk mengevaluasi terlaksananya misi dan agenda prioritas tersebut diperlukan indikator yang terukur. Hasil evaluasi tersebut dapat dijadikan pertimbangan dalam membuat kebijakan untuk memperbaiki tingkat kesejahteraan.
Salah satu pengukuran yang dapat digunakan adalah Indikator Kesejahteraan Rakyat (Inkesra) yang disusun Badan Pusat Statistik (BPS) yang diolah dari data Survei Sosial Ekonomi Nasional (SUSENAS). Indikator ini mengukur kesejahteraan dengan menggunakan pendekatan kebutuhan dasar (basic needs).
Untuk mengukur perubahan tingkat kesejahteraan kabupaten/kota, perlu dilakukan analisis perpindahan cluster dari periode ke periode. Salah satu metode yang dapat digunakan untuk melakukan clustering adalah Self-organizing Maps (SOM). Hasil clustering dengan SOM kemudian dapat dianalisis menggunakan Relative Density Self-Organizing Maps (ReDSOM).
Variabel yang digunakan pada penelitian ini sebanyak 22 variabel dengan jumlah record 497 kabupaten/kota. Data yang dibandingkan adalah data tahun 2011 dan 2014. Dari hasil penelitian ini terdapat enam cluster pada tahun 2011 dan tujuh cluster pada tahun 2014. Variabel yang berubah secara signifikan pada sebagian besar perpindahan cluster adalah Angka Partisipasi Sekolah.

One of the development goal is to improve Indonesian people’s quality of life including welfare. A measurable indicator is needed to evaluate the realisation of the goal. The evaluation results can be used to make beter policy to improve welfare.
In Indonesia we can use Welfare Indicator (Indikator Kesejahteraan Rakyat/Inkesra) to measure welfare. This indicator is based on basic needs. This indicator is processed from SUSENAS.
To measure welfare improvement, we need to analyze cluster change over periods. A method that can be used clustering is Self-organizing Maps (SOM). Based on clustering result of data from different period, we can analyze cluster change.
This research used 22 variables and 497 records. The result of this research is regencies/municipalities in 2011 can be divided into six clusters and seven clusters in 2014. Variable that changed significantly in most of migrated clusters is School Participation.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2016
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Kathan Gerry Vivaldi
"Nilai yang hilang adalah nilai yang tidak disimpan dalam variabel tertentu dalam pengamatan. Nilai yang hilang dapat ditemukan dalam data di hampir semua bidang penelitian dan dapat mempersulit analisis data. Self-Organizing Maps (SOM) adalah metode clustering berbasis jaringan saraf yang dapat digunakan sebagai metode imputasi, di mana SOM menyalahkan nilai-nilai yang hilang dengan menggeneralisasi pengamatan mengandung nilai yang hilang. Ensemble Self-Organizing Maps (E-SOM) adalah pengembangan metode imputasi SOM, di mana metode E-SOM diterapkan kerangka ensemble dengan menggunakan beberapa SOM untuk meningkatkan kemampuan generalisasi. Dalam tesis ini metode E-SOM dan SOM diimplementasikan untuk imputasi nilai yang hilang dalam data Penyakit Jantung Afrika Selatan dengan menggunakan 15 ansambel dan berbagai variasi dalam jumlah neuron. Pada data imputasi kedua metode ini kemudian dibentuk oleh model klasifikasi Hutan Acak dan dilakukan evaluasi kinerja model yang dibentuk menggunakan nilai akurasi dalam data pengujian. Hasil evaluasi menunjukkan bahwa untuk model yang terbentuk dari data imputasi E-SOM menghasilkan nilai akurasi yang lebih baik untuk variasi 20, 30, 50, 60, dan 80 neuron dalam klasifikasi data pengujian. Sedangkan untuk variasi 40 neuron, model terbentuk dari data imputasi SOM menghasilkan nilai akurasi yang lebih baik, dan untuk variasi 70 neuron, kedua metode menghasilkan nilai akurasi yang sama. Selain itu, menerapkan berbagai kombinasi variasi dalam jumlah neuron dan jumlah ansambel dalam metode ini imputasi E-SOM. Model Random Forest dihasilkan dari data dari imputasi E-SOM dengan kombinasi 60 neuron dan 5 ansambel menghasilkan nilai akurasi paling optimal.

Missing values ​​are values ​​that are not stored in certain variables in the observation. Missing values ​​can be found in data in almost all fields of research and can complicate data analysis. Self-Organizing Maps (SOM) is a neural network based clustering method that can be used as an imputation method, where SOM blames missing values ​​by generalizing observations contains missing values. Ensemble Self-Organizing Maps (E-SOM) is the development of the SOM imputation method, in which the E-SOM method is applied to an ensemble framework by using multiple SOMs to improve generalization capabilities. In this thesis the E-SOM and SOM methods are implemented for the imputation of missing values ​​in South African Heart Disease data with using 15 ensembles and various variations in the number of neurons. In the imputation data the two methods are then formed by the Random Forest classification model and an evaluation of the performance of the model is formed using the accuracy values ​​in the test data. The evaluation results show that the model formed from E-SOM imputation data produces better accuracy values ​​for variations of 20, 30, 50, 60, and 80 neurons in the classification of test data. As for the variation of 40 neurons, the model formed from SOM imputation data produces a better accuracy value, and for the variation of 70 neurons, both methods produce the same accuracy value. Other than that, applying various combinations of variations in the number of neurons and the number of ensembles in this method imputation E-SOM. The Random Forest model is generated from data from the E-SOM imputation with a combination of 60 neurons and 5 ensembles producing the most optimal accuracy value
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Gde Angga Surjana
"Pengelompokan nasabah asuransi berdasarkan Self-Organizing Map (SOM) dan analisis cluster hierarki I Gde Angga Surjana (0399010211) Self-Organizing Map (SOM) merupakan metode pengelompokan yang dapat digunakan untuk memvisualisasikan sekaligus mengeksplorasi karakteristik data. Kombinasi antara SOM dan analisis cluster hierarki dapat menjadi metode pengelompokan yang efektif apabila digunakan pada data yang berukuran relatif besar, seperti pada data nasabah dari suatu perusahaan asuransi. Kedua metode ini digunakan untuk membentuk kelompok nasabah berdasarkan produk asuransi yang diikuti agar perusahaan dapat mengidentifikasi kebutuhan para nasabahnya akan asuransi. Hasil pengelompokan dari kedua metode ini adalah tiga kelompok utama, yaitu kelompok nasabah yang sadar asuransi, kelompok nasabah asuransi jiwa dan kelompok nasabah satu jenis asuransi tertentu. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2005
S27606
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aflus Akmal
"ABSTRAK
Diagnosa kesalahan dalam sistem proses kimia mendapatkan perhatian yang luas dari banyak topik penelitian. Metode jaringan syaraf tiruan merupakan salah satu pilihan dalam metode diagnosis kesalahan, tetapi dalam penerapan strateginya dengan menggunakan supervised network waktu pelatihan dan penambahan pengetahuan merupakan suatu proses yang memerlukan waktu yang lama. Dalam makalah dibahas strategi diagnosa kesalahan pada kolom distilasi dengan Kohonen Self-Organizing Map.
Karena itu strategi diagnosa kesalahan berbasiskan Kohonen Self-Organizing Map diharapkan dapat memberikan solusi terhadap masalah tersebut. Algoritma Kohonen Self-Organizing Map adalah suatu media jaringan syaraf tiruan untuk analisis dan visualisasi data dimensi tinggi. Kohonen Self-Organizing Map memetakan hubungan statistik nonlinier diantara input data yang berdimensi tinggi ke dalam suatu hubungan geometri sederhana biasanya pada kisi dua atau satu dimensi.
Strategi ini memanfaatkan proses pelabelan kluster atau vektor referensi pada peta Kohonen SOM, dan mesimulasikannya seperti pada proses pemodelan dengan Kohonen Self-Organizing Map. Dari hasil didapat bahwa kinerja yang didapatkan dari strategi tersebut sangat bergantung dari keberhasilan pemetaan untuk mendapatkan model dinamika proses kolom distilasi tersebut."
2001
S49154
UI - Skripsi Membership  Universitas Indonesia Library
cover
Musnida Ulya
"ABSTRAK
Performa baik dari Self-Organizing Map (SOM) telah terbukti dalam
mengklasifikasikan citra wajah yang berada dalam kondisi pencahayaan yang
baik. Namun saat objek wajah mengalami pencahayaan yang berubah-ubah dan
diambil dari berbagai sudut pandang berbeda, maka tingkat nilai rekognisi citra
wajah dengan menggunakan metode SOM umumnya akan menurun.
Dalam penelitian ini menggunakan metode Fuzzy Self-Organizing Map
(FSOM) sebagai sistem pengenal wajah pada citra untuk meningkatkan nilai
rekognisi citra wajah yang mengalami pencahayaan yang berubah-ubah dari
berbagai sudut.
Hasil penelitian menunjukkan bahwa performa FSOM untuk mengenali wajah
pada data berdasarkan sudut pandang dengan tingkat rekognisi tertinggi
didapatkan pada set data ke-10 saat sudut 100 pada saat wajah frontal yaitu
sebesar 87%, pada data berdasarkan perubahan cahaya dengan tingkat rekognisi
tertinggi pada set data ke-1 sebesar 66.88%, dan pada data berdasarkan objek
wajah dengan tingkat rekognisi tertinggi pada set data ke-4 sebesar 88.33%.
Berdasarkan Hasil penelitian didapatkan bahwa tingkat rekognisi rata-rata FSOM
30% lebih tinggi dari SOM pada setiap pengelompokkan data dan juga didapatkan
bahwa dengan metode FSOM mampu mengenali citra dengan baik yang
mengalami pencahayaan yang berubah-ubah dari sudut yang berbeda-beda.

ABSTRACT
Perform of Self-Organizing Map (SOM) has been proven to classify the face
images in good illumination conditions. But when this technique is applied to
various viewpoints of images in unstable illumination conditions, the accuracy
of face recognition will decrease.
In this research, Fuzzy Self-Organizing Map (FSOM) is introduced as a new
technique to increase the accuracy when the images are taken from various
viewpoints in the change illumination conditions.
In this results from the research show that perform of FSOM to face
recognition from based on the viewpoints have the highest recognition rate in the
tenth data set when the viewpoints is set to be 10 degree where the images had
been taken is achieved at 87%. The result has also shown that based on the
illumination conditions, the highest recognition rate is achieved at 66.88% in the
first data set. Based on the face objects, the most accurate recognition is achieved
at 88.33% in the fourth data set. These results show that FSOM can give 30%
better performance than SOM to perform face images classification in the changes
illumination conditions and various viewpoints.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42448
UI - Skripsi Open  Universitas Indonesia Library
cover
"This volume constitutes the thoroughly refereed post-conference proceedings of the International Workshop on Adaptive and Learning Agents, ALA 2011, held at the 10th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2011, in Taipei, Taiwan, in May 2011. The 7 revised full papers presented together with 1 invited talk were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on single and multi-agent reinforcement learning, supervised multiagent learning, adaptation and learning in dynamic environments, learning trust and reputation, minority games and agent coordination."
Berlin: Springer, 2012
e20406302
eBooks  Universitas Indonesia Library
cover
Artikel Jurnal  Universitas Indonesia Library
cover
Tukul Rameyo Adi
"Metoda klasifikasi Jaringan Syaraf Tiruan (JST) telah banyak diterapkan dalam bidang penginderaan jauh. Dalam penelitian ini dilakukan percobaan klasifikasi awan dengan menerapkan metoda JST Kohonen pada data citra multispektral satelit NOAA AVHRR. JST Kohonen adalah metoda klasifikasi tak terselia yang berbasis pada sistem pembelajaran kompetitif Self-Organizing Maps (SOM). Prosedur percobaan terdiri dari tiga tahap, yakni tahap pembelajaran, tahap pelabelan dan tahap klasifikasi.
Pada mulanya, klasifikasi awan dilakukan menggunakan lima kanal data citra sebagai vektor masukan, yakni kanal cahaya-tampak, infra-merah dekat, infra-merah tengah, dan dua kanal infra-merah termal. Hasil klasifikasi lalu dibandingkan dengan hasil klasifikasi visual untuk menentukan tingkat keberhasilannya. Kemudian, proses klasifikasi dilanjutkan untuk mengevaluasi kanal-kanal yang dominan dalam klasifikasi awan dengan cara mereduksi jurnlah kanal yang digunakan dalam klasifikasi.
Hasil percobaan menunjukkan bahwa klasifikasi awan menggunakan JST Kohonen memberikan tingkat keberhasilan yang cukup tinggi sebesar 81% untuk katagori 10 kelas atau 95% untuk 4 katagori utama 4 kelas awan, dengan kanal-kanal yang dominan yaitu kanal satu (cahaya-tampak) dan kanal empat (infra-merah termal)."
Depok: Fakultas Teknik Universitas Indonesia, 1999
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Panjaitan, Yantine Arsita Br. author
"Peningkatan aksesibilitas koleksi perpustakaan, khususnya koleksi skripsi, tesis, dan disertasi perlu dilakukan, mengingat jumlah koleksi yang tinggi, namun sistem pengelolaan saat ini masih didasarkan pada kedatangan koleksi di Perpustakaan Universitas Indonesia. Untuk mengelola koleksi tersebut dibutuhkan kategori-kategori yang dapat mewakili skripsi, tesis, dan disertasi. Penelitian ini dilakukan untuk menentukan kategori-kategori tersebut melalui pengolahan data abstrak setiap skripsi, tesis, dan disertasi pada tahun 2005-2015 dengan salah satu algoritma clustering, yaitu Self-Organizing Map. Melalui penelitian ini ditemukan 139 kategori yang dapat mewakili skripsi, tesis, dan disertasi, yang akan digunakan untuk mengelompokkan skripsi, tesis, dan disertasi Universitas Indonesia.

Accessibility improvement of library collection, in particular undergraduate thesis, post-graduate thesis, and dissertation needs to be done, given the high number of collection, but the current management system is still based on the arrival of collection in Universitas Indonesia?s Library. Categories that can represent undergraduate thesis, post-graduate thesis, and dissertation are required in order to manage those collections. This research aims to determine categories through abstract data processing of each undergraduate thesis, post-graduate thesis, and dissertation in 2005-2015 with a clustering algorithm, namely Self-Organizing Map. This study found 139 categories that can represent undergraduate thesis, postgraduate thesis, and dissertation, that can be used to classify those collections."
Depok: Universitas Indonesia, 2016
14-21-050822194
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3   >>