Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 21 dokumen yang sesuai dengan query
cover
Dwi Sudarno Putra
Abstrak :
Perkembangan teknologi kontrol terus berlanjut dengan segala ragam pengembangannya, salah satu diantaranya adalah penerapan metode Jaringan Syaraf Tiruan dalam proses kontrol. Kendala yang saat ini dihadapi adalah kenyataan bahwa Jaringan Syaraf Tiruan memiliki respon yang relatif lambat, hal ini dikarenakan panjangnya algoritma sehingga memerlukan waktu komputasi yang lama. Maka dari itu tulisan ini akan membahas tentang pengembangan metode alternatif untuk mendapatkan algoritma Jaringan Syaraf Tiruan yang lebih cepat dan akurat. Ada dua yang sudah berhasil dikembangkan yaitu SOM Fuzzy dan LVQ Fuzzy dengan memfokuskan pada perhitungan jarak antar vektor fuzzy. Dimana, setelah dilakukan pengembangan dan pengujian, metode SOM Fuzzy dan LVQ Fuzzy terbukti mampu meningkatkan recognition dari metode SOM dan LVQ. Dari segi kecepatan, meskipun metode fuzzy yang dikembangkan ini memiliki waktu proses yang sedikit lebih lama daripada metode SOM dan LVQ reguler, namun jika dibandingkan dengan Backpropagation yang memiliki tingkat recognition sama baiknya waktu prosesnya metode fuzzy jauh lebih cepat.
The development of control technology continues with all kinds of development, one of them is the application of neural networks in process control. Constraints currently faced is the fact that neural networks have a slow response, this is because the length of the algorithm that requires a long computation time. So this paper will discuss the development of alternative methods to obtain algorithms of neural networks more quickly and accurately.The methods that have been successfully developed is the Fuzzy SOM and Fuzzy LVQ by focusing on the calculation of distance between fuzzy vectors. After development and testing, methods of Fuzzy SOM and Fuzzy LVQ been able to increase recognition of SOM and LVQ methods. In terms of speed, although the methods developed in this fuzzy processing time slightly longer than the regular method of SOM and LVQ, but when compared with a level of recognition Backpropagation as good when the process is fuzzy method is much faster.
Depok: Universitas Indonesia, 2011
T29527
UI - Tesis Open  Universitas Indonesia Library
cover
Hafizh Haidar
Abstrak :
ABSTRAK

Sistem pendeteksi kardiomegali dilakukan dengan memeriksa hasil citra radiografi toraks manusia. Pada bagian ekstraksi fitur, citra diproses menggunakan metode Discrete cosine transform. Pada sistem ini, digunakan DCT sebanyak 5 level. Hasil dari proses DCT akan digunakan sebagai input untuk proses selanjutnya, yaitu Learning vector quantization. Bagian klasifikasi menggunakan LVQ terdiri dari dua bagian, yaitu bagian pelatihan dan bagian pengenalan. Bagian pelatihan merupakan bagian dimana sistem dilatih untuk mendapatkan bobot akhir. Bagian pengenalan merupakan bagian yang sistem gunakan untuk mengenali ada atau tidaknya kardiomegali dengan hasil pembelajaran dari bagian pelatihan. Sistem menunjukkan hasil akurasi pengujian yang cukup tinggi, yaitu 97,78% dimana dari 45 citra uji, 44 citra dapat diklasifikasikan dengan baik.


ABSTRACT

The detection system of cardiomegaly is conducted by processing human CXR, or chest X-Ray. In feature extraction, X-Ray images are processed using Discrete Cosine Transfom method. In this system, 5-Level DCT is applied. The result of feature extraction is used as input for the next method, which is Learning vector quantization. LVQ consists of two parts, which are the training part and the testing part. The training part is when the system is trained to obtain final weight. The testing part is where system recognizes and decides whether the CXR shows the indication of cardiomegaly based on the knowledge it obtained from the training part. The system shows high testing accuracy, which is 97,78% where 44 out of 45 X-Ray images have been well-diagnosed.

Fakultas Teknik Universitas Indonesia, 2015
S59878
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rika
Abstrak :
ABSTRAK
Pada beberapa tahun terakhir, sistem pengenalan wajah telah marak digunakan dalam berbagai aspek sebagai wujud dari kemajuan teknologi. Berbagai penelitian dilakukan untuk terus memperbaiki akurasi dari pengenalan wajah. Pada penelitian ini digunakan metode klasifikasi Learning Vector Quantization dan Fuzzy Kernel Learning Vector Quantization. Data yang digunakan adalah Labeled Face in The Wild-a LFW-a. Database ini tidak memiliki batasan seperti latar belakang, ekspresi, posisi, dan sebagainya. Berdasarkan hasil uji coba menggunakan database LFW-a, sistem pengenalan wajah dengan metode LVQ memiliki akurasi tertinggi 89,33 dan metode FKLVQ memiliki akurasi tertinggi 89,33 pula.
ABSTRACT
In recent years, face recognition is widely used in various aspects as a form of technology advancement. Various studies are conducted to keep improving the accuracy of face recognition. In this research, Learning Vector Quantization and Fuzzy Kernel Learning Vector Quantization are used as a method of classification. The data used in this research is Labeled Face in The Wild a LFW a. This database has no restrictions such as background, expression, position, and so on. Based on test results using LFW a database, face recognition using LVQ method has highest accuracy at 89,33 and FKLVQ method has highest accuracy at 89,33 as well.
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Novia R. Putri
Abstrak :
ABSTRAK Learning Vector Quantization (LVQ) merupakan salah satu metode yang digunakan dalam jaringan syaraf tiruan atau Artificial Neural Network. Namun untuk data yang bervariasi,performa LVQ mengalami penurunan, hal ini terlihat dari tingkat rekognisi yang diperoleh. Oleh karena itu dikembangkan metode logika Fuzzy yang diperkirakan mampu menaikkan kembali tingkat rekognisi dan performa dari LVQ . Hasil yang diperoleh menunjukkan bahwa dengan logika Fuzzy tingkat rekognisi naik hingga 40 %.
ABSTRACT Learning Vector Quantization (LVQ) is one of the method that used in Artificial Neural Network.,but result shows that any data variations have decreasing the recognition rate. Fuzzy Logic developed to increasing and reinstate the recognition rate of LVQ. With Fuzzy logic, the result shows that recognition rate achieve 40% of increasing.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42174
UI - Skripsi Open  Universitas Indonesia Library
cover
Hary Budiarto
Abstrak :
ABSTRAK
Sistem penciuman elektronik terdiri dari 3 bagian yaitu sistem sensor yang merubah besaran aroma menjadi besaran listrik, sistem elektronik yang mengukur besar perubahan frekuensi sensor dan sistem jaringan neural buatan yang melakukan pengenalan aroma. Peningkatan kemampuan pengenalan aroma yang cepat, tepat dan akurat pada sistem neural buatan sangat diperlukan oleh sistem penciuman elektronik ini, untuk itu perlu dikembangkan metode fuzzy learning vector quantization.

Metode FLVQ merupakan metode jaringan neural buatan berbasis pada vector quantization yang mengintegrasikan teuri fuzzy dalam proses pembelajarannya dan mempunyai algoritma yang sederhana tetapi berkemampuan tinggi dalam pengenalan aroma. Pengembangan fuzzy learning vector quantization berfokus pada proses pembelajarannya terutama pada cara merubah fuzziness vektor pewakil. Berdasarkan cara perubahan fuzzinessnya ada tiga variasi FLVQ yang dinamakan FLVQ konstan, yaitu merubah lebar fuzziness vektor pewakil dengan besaran yang konstan; FLVQ variabel, yaitu merubah lebar fuzziness vektor pewakil berdasarkan nilai similaritas; dan FLVQ tunggal, yaitu merubah lebar fuzziness vektor pewakil hanya pada salah satu bagian sisinya.

Hasil Penelitian dengan sampel aroma produk marta tilaar dan aroma etanol menunjukkan bahwa jaringan neural buatan FLVQ mempunyai kemampuan pengenalan yang lebih baik bila dibandingkan dengan propagasi balik.
1998
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Andry Sunandar
Abstrak :
Telah dilakukan penelitian terhadap pengembangan algoritma FNGLVQ sehingga memiliki karakteristik adaptif terhadap data input sehingga besaran perubahan vektor referensi memiliki besaran nilai yang adaptif. Karakteristik adaptif didapatkan dengan melakukan modifikasi terhadap perubahan update bobot dengan melakukan penurunan fungsi keanggotaan fuzzy tidak hanya terhadap parameter mean (yang dilakukan pada FNGLVQ awal) namun penurunan dilakukan terhadap kedua nilai min dan max sehingga besaran perubahan nilai min dan max akan bervariasi (tidak konstan seperti FNGLVQ) yang tergantung dari besaran input yang digunakan. Karakteristik ini dapat meningkatkan akurasi dalam percobaan dalam ketiga jenis data, yakni data EKG Aritmia, data pengenalan Aroma dengan 3 campuran, serta data Sleep secara keseluruhan, namun perbedaan nilai akurasi terbesar didapatkan dari pengujian data pengenalan aroma 3 campuran. Pengembangan karakteristik adaptif terhadap algoritma FNGLVQ dilakukan dengan kedua jenis fungsi keanggotaan yakni fungsi keanggotaan segitiga dan fungsi keanggotaan PI, dan FNGLVQ adaptif dengan fungsi keanggotaan PI sedikit lebih baik dibandingkan FNGLVQ adaptif dengan fungsi keanggotaan segitiga. ......This research has been conducted on the development of FNGLVQ algorithms which have adaptive characteristics to the input data so that the amount of change in the reference vector has a magnitude of adaptive value. Adaptive characteristics are obtained by modifying the update changes the weight by doing a fuzzy membership function derivation. This is not only performed on the parameters of the mean (which is done at the beginning FNGLVQ) but they are derivated to both min and max values so that the amount of change in the weight and is continued with min and max values will vary (not constant as in the case of FNGLVQ) which in turn depends on the amount of inputs used. These characteristics may increase the accuracy of the experiment in all three types of data, including data Arrhythmia ECG, data recognition Aroma with 3 mix, as well as overall Sleep data, but the biggest difference is the accuracy of values which have obtained from the test for 3 mixed aroma data recognition. Development of adaptive characteristics of the algorithm FNGLVQ has been performed with both types of membership functions namely triangular membership functions and PI membership functions, and FNGLVQ PI adaptive membership functions has been found to be slightly better than FNGLVQ adaptive triangular membership functions.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2013
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Syarifah Dina Meutia
Abstrak :
Kanker leher rahim atau kanker serviks merupakan penyakit kanker yang paling banyak menyerang wanita di negara berkembang, termasuk Indonesia. Salah satu cara pencegahannya adalah dengan melakukan test Pap-Smear. Sel serviks hasil test Pap-Smear tersebut kemudian didiagnosa oleh dokter Patologi Anatomi. Namun dokter Patologi Anatomi tidak selalu ada di semua wilayah, terutama di daerah terpencil. Untuk memungkinkan diagnosa pasien di daerah terpencil yang jarang ditemukan dokter Patologi Anatomi, diperlukan suatu upaya untuk mengotomatiskan diagnosa terhadap hasil test Pap-Smear, sehingga dapat dilakukan diagnosa jarak jauh (telemedicine). Penelitian ini bertujuan untuk melakukan diagnosa terhadap citra hasil test Pap-Smear, yaitu dengan menggunakan Algoritma Multifraktal yang dikombinasi dengan Adaptive Multiple Thresholding sebagai metode segmentasi secara otomatis dan Jaringan Syaraf Tiruan menggunakan Learning Vector Quantization (LVQ) sebagai metode klasifikasi dengan nilai intensitas dari citra hasil segmentasi sebagai cirinya. Performa dari hasil segmentasi akhir, tingkat ketelitiannya sekitar 70%. Hasil klasifikasi dengan LVQ terhadap tujuh kelas tingkat pengenalannya masih di bawah 40%, sedangkan tingkat pengenalan terhadap dua kelas mampu mencapai sekitar 82%.
Cervix cancer is the most cancer disease that attact women in the developing country, include Indonesia. One of the way of its prevention is by a Pap-Smear test. Cervix cells that resulted from Pap-Smear test then diagnosed by a Pathology of Anatomy doctor. But Pathology of Anatomy doctor is not always in all area. To enable diagnosa patient in purilieus which seldom be found Pathology of Anatomy doctor, needed an effort, so that can be conducted by long distance diagnosa ( telemedicine). This research aims to conduct diagnose the image result of Pap-Smear test, and keep involve Multifractal Algorithm which is combined with Adaptive Multiple Thresholding as segmentation method automatically, and Artificial Neural Network using Learning Vector Quantization (LVQ) as clssification method with intensity value from segmentation image as its feature. The performance in segmentation and increasing quality result, the correctness about 70%. The result of classification using LVQ toward seven classes, its recognition is less than 40%, meanwhile the recognition rate of two classes about 82%.
Depok: Universitas Indonesia, 2009
T-Pdf
UI - Tesis Open  Universitas Indonesia Library
cover
Syarifah Dina Meutia
Abstrak :
Kanker leher rahim atau kanker serviks merupakan penyakit kanker yang paling banyak menyerang wanita di negara berkembang, termasuk Indonesia. Salah satu cara pencegahannya adalah dengan melakukan test Pap-Smear. Sel serviks hasil test Pap-Smear tersebut kemudian didiagnosa oleh dokter Patologi Anatomi. Namun dokter Patologi Anatomi tidak selalu ada di semua wilayah, terutama di daerah terpencil. Untuk memungkinkan diagnosa pasien di daerah terpencil yang jarang ditemukan dokter Patologi Anatomi, diperlukan suatu upaya untuk mengotomatiskan diagnosa terhadap hasil test Pap-Smear, sehingga dapat dilakukan diagnosa jarak jauh (telemedicine). Penelitian ini bertujuan untuk melakukan diagnosa terhadap citra hasil test Pap-Smear, yaitu dengan menggunakan Algoritma Multiflaktal yang dikombinasi dengan Adaptive Multiple Thresholding sebagai metode segmentasi secara otomatis dan Jaringan Syaraf Tiruan menggunakan Learning Vector Quantization (LVQ) sebagai metode klasifikasi dengan nilai intensitas dari citra hasil segmentasi sebagai cirinya. Performa dari hasil segmentasi akhir, tingkat ketelitiannya sekitar 70%. Hasil klasifikasi dengan LVQ terhadap tujuh kelas tingkat pengenalannya masih di bawah 40%, sedangkan tingkat pengenalan terhadap dua kelas mampu mencapai sekitar 82%. ......Cervix cancer is the most cancer disease that attact women in the developing country, include Indonesia. One of the way of its prevention is by a PapSmear test Cervix cells that resulted from Pap-Smear test then diagnosed by a Pathology of Anatomy doctor. But Pathology of Anatomy doctor is not always in all area. To enable diagnosa patient in purilieus which seldom be found Pathology of Anatomy doctor, needed an effort, so that can be conducted by long distance diagnosa (telemedicine). This research aims to conduct diagnose the image result of Pap-Smear test, and keep involve Multifractal Algorithm which is combined with Adaptive Multiple Thresholding as segmentation method automatically, and Artiflcial Neural Network using Leaming Vector Quantization (LVQ) as clssification method with intensity value from segmentation image as its feature. The performance in segmentation and increasing quality result, the correctness about 70%. The result of classification using LVQ toward seven classes, its recognition is less than 40%, meanwhile the recognition rate of two classes about 82%.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
T26451
UI - Tesis Open  Universitas Indonesia Library
cover
Dian Rismawati
Abstrak :
Departemen Teknik Elektro Universitas Indonesia telah mengembangkan suatu sistem berbasis Latent Semantic Analysis (LSA) untuk mendeteksi plagiarisme pada karya tulis berbahasa Indonesia dan Inggris. Data keluaran sistem deteksi plagiarisme berbasis LSA adalah nilai frobenius norm, slice, dan pad. Pada skripsi ini akan menjelaskan serta memberikan analisis pada pengembangan sistem deteksi plagiarisme yang telah ada yaitu dengan menerapkan algoritma Support Vector Machine (SVM). Support Vector Machine (SVM) adalah suatu Learning Algoritm yang bertujuan untuk menemukan suatu hipotesis berupa bidang pemisah (hyperplan) terbaik dari sekumpulan data yang dapat dipisahkan secara linear maupun tidak linear. SVM akan memisahkan data hasil keluaran sistem deteksi plagiat bebasis LSA menjadi dua kelas yaitu "plagiat" dan "tidak plagiat" dengan menggunakan 2 metode yaitu kombinasi data input dan kombinasi data output dengan metode AND. Beberapa modifikasi terhadap imput program dilakukan diantaranya memvariasikan parameter-parameter pembelajaran dan memvariasikan data hasil keluaran program deteksi plagiarisme berbasis LSA. Hasil dari analisis serta pengujian yang telah dilakukan yaitu jika menggunakan parameter serta kombinasi data yang tepat, SVM mampu untuk meningkatkan akurasi sistem dari sistem yang menggunakan metode Learning Vector Quantization (LVQ) pada penelitian sebelumnya hingga menghasilkan akurasi sebesar 63,15% hal ini dilihat jika mempertimbangkan keseimbangan terhadap aspek presisi dan relevansi program sedangkan jika dilihat melalui presentase jumlah data yang berhasil diklasifikasikan dengan tepat, SVM mampu menghasilkan akurasi sebesar 97,04%.
Department of Electrical Engineering, University of Indonesia has developed a system based on Latent Semantic Analysis (LSA) to detect plagiarism between two paper written in different languages, which are Indonesian and English. The output data of plagiarism detection system are frobenius norm, slice, and pad. This thesis will explain and provide analysis of the development of plagiarism detection system that already exist by applying Support Vector Machine (SVM) algorithm. Support Vector Machine (SVM) is a Learning Algorithm that aims to find a best hypothetical form called hyperplan to separated a set of data that can be separated linearly and nonlinearly. SVM will separate output data of plagiarism detection system into two classes, "plagiat" class and "tidak plagiat" class by using two methods: combination of input data method and output data combined with AND method. Some modifications to input program are made, such as variating the parameters of learning and variating the output data of plagiarism detection program. The results of analysis and test that has been done are: if the system use correct parameters and correct combinations of the data, SVM is able to improve accuracy of the system from the last research that using Learning Vector Quantization (LVQ). The accuracy of SVM is 63,15% if considering the balance of precision and relevance of the program, while when viewed through a percentage of the amount of data that appropriately classified, the accuracy of SVM is 97.04%.
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65023
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adam Arsy Arbani
Abstrak :
Departemen Teknik Elektro Universitas Indonesia sejak tahun 2007 telah mengembangkan sistem penilaian esai otomatis yang dinamakan dengan Simple-O. Simple-O menggunakan metode Latent Semantic Analysis LSA untuk membandingkan dua esai dengan cara mengekstrak esai tersebut menjadi matriks. Pengembangan sebelumnya dari Simple-O adalah penambahan Learning Vector Quantization LVQ yang merupakan metode dari artificial neural network. Skripsi ini akan membahas serta memberikan analisis terkait pengaruh penambahan fungsi persamaan kata pada sistem penilaian esai otomatis Simple-O terhadap akurasi dari program itu sendiri. Untuk melihat pengaruh penambahan fungsi persamaan kata pada sistem penilaian esai otomatis Simple-O ini, maka dilakukan lima skenario berbeda. Skenario tersebut adalah dengan memvariasikan jumlah keywords yang ada pada esai jawaban menjadi sejumlah 100, 80, 60, dan 20 mendekati jumlah keywords jawaban referensi. Dari hasil pengujian yang telah dilakukan, terdapat skenario yang mengalami penurunan akurasi dan kenaikan akurasi. Jika disimpulkan, rata-rata akurasi program Simple-O setelah penambahan fungsi persamaan kata mengalami peningkatan. Namun, peningkatan rata-rata akurasi yang terjadi tidak terlalu signifikan, peningkatan rata-rata akurasi yang terjadi setelah penambahan fungsi persamaan kata adalah sebesar 5.4 dari 90.9 menjadi 96.3. ......Department of Electrical Engineering Universitas Indonesia has developed an automatic essay grading system called Simple O since 2007. Simple O uses the Latent Semantic Analysis LSA method to compare two essays by extracting the essay into matrix. The previous development of Simple O is the addition of Learning Vector Quantization LVQ which is a method of artificial neural network. This research will discuss and provide analysis related to the effect of adding word similarity function to the automatic essay grading system Simple O to the accuracy of the system itself. The experiment will be conducted with five different scenarios by varying the number of keywords in the students answer essay to 100, 80, 60, 40, and 20 of the reference essay keywords. According to the result, there are scenarios that has decreased and increased in accuracy. The average accuracy of the Simple O system after the addition of word similarity function has increased, though not significant. The average increase in accuracy after the addition of word similarity function is 5.4 from 90.9 to 96.3.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3   >>