Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Mansyur M
Abstrak :
Kabupaten Pangkajene dan Kepulauan Pangkep merupakan daerah yang berada pada wilayah Provinsi Sulawesi Selatan. Pengelolaan pegawai negeri sipil PNS lingkup pemerintah Kabupaten Pangkep dilakukan oleh Badan Kepegawaian Pendidikan dan Pelatihan Daerah BKPPD Kabupaten Pangkep. BKPPD Kabupaten Pangkep memberikan layanan kepada pegawai mulai dari perekrutan, penempatan, mutasi, pendidikan dan pelatihan, kedisiplinan, pemberhentian, dan pensiun. BKPPD dalam melakukan mutasi masih mengalami kesulitan dalam menentukan pegawai yang sebaiknya dipindahkan karena tidak adanya pola yang menjadi acuan. Penelitian ini bertujuan untuk mendapatkan pola mutasi dengan menggunakan data mining mengacu pada metodologi CRISP-DM berdasarkan data riwayat mutasi pada sistem aplikasi layanan kepegawaian SAPK . Teknik klasifikasi dengan algoritme Decision Tree, Na ve Bayes, dan Support Vector Machine SVM diterapkan pada data riwayat mutasi untuk mengetahui algoritme terbaik.Algoritme yang memiliki tingkat akurasi paling baik yaitu decision tree dengan nilai sebesar 72,76 . Pola mutasi dapat diimplementasikan oleh BKPPD untuk merancang dokumen redistribusi pegawai lingkup Pemerintah Kabupaten Pangkep. ......Pangkajene and Kepulauan Pangkep District is an area located in South Sulawesi Province. The management of civil servants PNS scope of government of Pangkep District is done by Regional Civil Servants, Education, and Training BKPPD of Pangkep District. BKPPD provides services to civil servants ranging from recruitment, placement, transfer, education and training, discipline, dismissal, and retirement. BKPPD in conducting mutations still have difficulty in determining which civil servants should be moved because of the absence of a reference pattern. This study aims to obtain mutation patterns using data mining refers to the CRISP-DM methodology based on historical data on the employment service application system SAPK . Classification techniques with Decision Tree, Na ve Bayes, and Support Vector Machine SVM algorithms are applied to the mutation history data to find the best algorithm.Algorithm that has the best accuracy is the decision tree with a value of 72,76 . The mutation pattern can be implemented by BKPPD to design the redistribution document of Pangkep District Government civil servants.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2018
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Muhammad Faisal M
Abstrak :
Terdapat beberapa media online yang ditutup oleh Kementrian Komunikasi dan Informatika (Kemkominfo) dikarenakan menjual obat aborsi. Hal tersebut karena aborsi merupakan tindakan yang dilarang yang tertulis pada Kitab Undang-Undang Hukum Pidana (KUHP) pada pasal 346. Oleh karena itu, agar situs dari PT XYZ tidak ditutup oleh Kemkominfo, PT XYZ melakukan penanganan terkait peredaran obat aborsi ini yaitu dengan pending system. Namun, pending system hanya mendeteksi judul dari produk dengan menggunakan kata kunci spesifik yang berhubungan dengan obat aborsi yang diinput oleh tim sehingga masih terdapat produk obat aborsi yang lolos beredar karena terdapat produk yang menggunakan kata kunci yang umum dan gaming keyword. Oleh karena itu, penelitian ini membahas terkait penerapan text mining untuk membangun sebuah classification model yang berasal dari korpus obat aborsi yang ada di PT XYZ yang akan digunakan untuk pendeteksian obat aborsi kedepannya yang ada di PT XYZ. Penelitian ini menggunakan model CRISP-DM untuk siklus hidup data mining. Selain itu, untuk membangun suatu classification model, Penelitian ini melakukan percobaan terhadap dua algoritme diantaranya adalah Naive Bayes dan Support Vector Machine dengan metode k-fold cross validation. Selain itu, penelitian ini menggunakan data harga sebagai fitur tambahan dari model yang dibangun. Untuk penentuan classification yang terbaik dilakukan evaluasi performa dari setiap classification model dengan menggunakan confussion matrix dengan parameter accuracy, recall, precision, f1-measure, dan AUC. Penelitian ini menggunakan beberapa kriteria dalam penghapusan duplikasi data untuk menghindari data bias. Model terbaik yang didapatkan yaitu model SVM dengan fitur harga yang memiliki nilai accuracy 99.82%, f1-score 99.79%, dan AUC 99.98%. Hasil dari model yang telah dianalisis pada penelitian ini dapat digunakan oleh PT XYZ untuk mendeteksi produk obat aborsi agar mengurangi kesempatan penjual menjual produk obat aborsi yang di PT XYZ. Selain itu, penelitian ini dapat memberikan gambaran untuk penelitian akademis berikutnya terkait keseluruhan proses dari text mining. ......There are several online media that were closed by the Ministry of Communication and Information (Kemkominfo) due to selling abortion drugs. This is because abortion is a prohibited act which is written in the Criminal Code (KUHP) in article 346. Therefore, in order PT XYZ is not closed by the Ministry of Communication and Information, PT XYZ create system that try to handle the circulation of abortion drugs, namely pending system. However, the pending system only detects the title of the product by using specific keywords related to abortion drugs that are inputted by the team so that there are still abortion drug products that pass through the system because there are products that use general keywords and gaming keywords. Therefore, this study discusses the application of text mining to build a classification model derived from the abortion drug corpus at PT XYZ which will be used for the detection of abortion drugs in the future at PT XYZ. This study uses the CRISP-DM model for the data mining life cycle. In addition, to build a classification model, this study conducted experiments on two algorithms including Naive Bayes and Support Vector Machine with the k-fold cross validation method. In addition, this study uses price data as an additional feature of the built model. To determine the best classification, the performance evaluation of each classification model is carried out using a confusion matrix with parameters accuracy, recall, precision, f1-measure, and AUC. This study uses several criteria in eliminating duplication of data to avoid data bias. The best model obtained is the SVM model with a price feature that has an accuracy value of 99.82%, f1-score 99.79%, and AUC 99.98%. The results of the model that had been analyzed in this study can be used by PT XYZ to detect abortion drug products in order to reduce the chance for sellers to sell abortion drug products at PT XYZ. In addition, this research can provide an overview for the next academic research related to text mining process.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Heru Suroso
Abstrak :
Badan Pertimbangan Jabatan dan Golongan (BPJG) merupakan badan yang dibentuk untuk menjamin objektivitas dan kualitas proses pengangkatan, pemindahan dan pemberhentian pejabat struktural unit kerja di BP Batam. Dalam pelaksanaan tugasnya, BPJG menggunakan sistem Human Resource Management (HRM) untuk mendukung proses seleksi calon pejabat, namun sistem HRM ini belum dapat menghasilkan daftar calon yang memenuhi syarat untuk diseleksi menjadi pejabat struktural secara otomatis. Tujuan dari penelitian ini adalah untuk menemukan pola pengisian daftar calon pejabat struktural BP Batam berdasarkan data riwayat jabatan yang ada di sistem HRM (2010-2020) menggunakan teknik data mining, sehingga diharapkan dapat mempercepat proses penyusunan daftar calon pejabat struktural BP Batam oleh BPJG dan dapat digunakan untuk mengembangkan fitur dashboard talent pool pegawai BP Batam. Tahapan penelitian ini dilakukan menggunakan metodologi CRISP-DM dan tiga algoritme data mining klasifikasi yaitu Decision Tree, Support Vector Machine (SVM), dan Naive Bayes. Model klasifikasi Decision Tree menghasilkan performa terbaik pada dua skenario eksperimen yang dilakukan, yaitu skenario class imbalanced dataset dan skenario class balanced dataset. Model klasifikasi Decision Tree menghasilkan 25 pola pengisian jabatan struktural di BP Batam dan atribut Golongan BP merupakan atribut yang paling menentukan untuk memprediksi suatu tingkat jabatan. ......Badan Pertimbangan Jabatan dan Golongan (BPJG) was formed to guarantee the objectivity and quality process of promotion, mutation and dismissal structural official at BP Batam. BPJG uses the Human Resource Management (HRM) system to support the selection process for prospective officials, however this system unable to automatically produce a list of candidates who meet the requirements to be selected as official. The objective of this research is to find patterns in filling the list of candidates for structural officials based on historical data in the HRM system using data mining techniques, so it will accelerate the process of compiling a list of candidates for structural officials by BPJG and also it can help BP Batam to develop employee talent pool feature for HRM. This research were carried out using the CRISP-DM methodology and three classification algorithms namely Decision Tree, SVM, and Naive Bayes. The Decision Tree classification model yields the best performance in the two experimental scenarios, namely the class imbalanced dataset and the class balanced dataset. The Decision Tree classification model yields 25 patterns for filling the list of candidates for structural officials and Golongan BP attribute is the most decisive attribute for predicting a position level.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Haekal Asyraf
Abstrak :
Penelitian ini bertujuan untuk membantu UMKM A dalam menentukan jenis produk yang dapat diproduksi kembali dari 4 kategori produk yang dimilikinya, yaitu Tenun Songket, Bordir Karancang, Sulaman Tangan, dan Batik, dengan menggunakan algoritma decision tree. UMKM A telah mengubah strategi produksinya akibat pandemi COVID-19 lalu, fokus pada produksi berbasis pesanan tanpa menyimpan stok barang yang banyak. Untuk mencapai tujuan tersebut, penelitian ini akan mengimplementasikan metode CRISP-DM (Cross-Industry Standard Process for Data Mining) dan algoritma decision tree serta alat bantu perangkat lunak terbaru serta berlisensi sumber terbuka yaitu KNIME. Data yang digunakan dalam penelitian ini akan diperoleh dari UMKM A dan berdasarkan proses bisnis produksi dan penjualan pada periode pandemi COVID-19. Hasil dari penelitian ini diharapkan dapat memberikan wawasan yang berguna bagi UMKM A dalam menyesuaikan strategi produksi mereka dengan kondisi pasar yang terus berubah akibat pandemi COVID-19. ......This research aims to help MSMEs A in determining the types of products that can be reproduced from the 4 product categories it owns, namely Tenun Songket, Bordir Karancang, Sulaman Tangan, and Batik, using the Decision Tree algorithm. MSMEs A has changed its production strategy due to the COVID-19 pandemic, focusing on production based on orders without keeping large stocks of goods. To achieve this goal, this research will implement the CRISP-DM (Cross- Industry Standard Process for Data Mining) methodology and the Decision Tree algorithm as well as the latest and open source licensed software tools, namely KNIME. The data used in this research will be obtained from MSMEs A and is based on production and sales business processes during the COVID-19 pandemic period. It is hoped that the results of this research will provide useful insights for MSMEs A in adapting their production strategies to changing market conditions due to the COVID-19 pandemic.
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nicko Perdana Putra
Abstrak :
Pengembangan karier merupakan salah satu aspek dalam pelaksanaan sistem merit, yang juga merupakan bagian dari delapan area perubahan pada Grand Design Reformasi Birokrasi 2010-2025. Komisi Aparatur Sipil Negara (KASN) menyebutkan bahwa banyak instansi pemerintah yang kesulitan dalam melaksanakan aspek pengembangan karier ini. Dari hasil wawancara, hal ini pun terjadi di Badan Kepegawaian Daerah (BKD) Provinsi Kalimantan Selatan. Penelitian ini mengusulkan pemanfaatan data mining dalam penyusunan rencana pengembangan karier pegawai negeri sipil (PNS) dengan berbasis pada metodologi CRISP-DM (Cross-Industry Standard Process for Data Mining). Penelitian ini memodelkan analisis kesenjangan kompetensi dan kinerja dengan melakukan eksperimen menggunakan class imbalance maupun class balance data set. Dari hasil evaluasi didapatkan algoritma SVM (Support Vector Machine) sebagai model terbaik pada masing-masing analisis dan skenario. Dari hasil analisis yang dilakukan dengan memetakan kelompok kesenjangan kompetensi-kinerja dalam bentuk Human Asset Value Matrix yang diadaptasi dari General Electric-McKinsey Nine-box Grid, dapat disusun rencana pengembangan karier PNS secara lengkap mulai dari rekomendasi promosi jabatan, informasi kebutuhan diklat, hingga hukuman disiplin. Selain dapat memberikan rekomendasi pengembangan karier PNS, hasil penelitian ini juga dapat memberikan informasi kompetensi maupun jabatan yang akan dikembangkan. ......Career development is one aspect of implementing the merit system, which is also part of the eight areas of change in the Grand Design for Bureaucratic Reform 2010-2025. The State Civil Apparatus Commission (KASN) stated that many government agencies had difficulties in implementing this aspect of career development. From the results of the interview, this also happened in the Regional Personnel Agency (BKD) of South Kalimantan Province. This study proposes the use of data mining in the preparation of career development plans for civil servants (PNS) based on the CRISP-DM (Cross-Industry Standard Process for Data Mining) methodology. This study models the competency and performance gap analysis by conducting experiments using class imbalance and class balance data sets. From the evaluation results, the SVM (Support Vector Machine) algorithm is obtained as the best model for each analysis and scenario. From the results of the analysis conducted by mapping the competency-performance gap groups in the form of the Human Asset Value Matrix adapted from the General Electric-McKinsey Nine-box Grid, a complete career development plan for civil servants can be drawn up starting from recommendations for promotions, information on training needs, to penalties. discipline. Besides being able to provide recommendations for career development for civil servants, the results of this study can also provide information on competencies and positions to be developed.
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Khrisna Primaputra
Abstrak :
Industri konstruksi merupakan industri dengan tingkat risiko tinggi dan menjadi industri paling berbahaya di seluruh dunia. Hal ini mendorong kebutuhan adanya sistem kontrol dan upaya pencegahan keselamatan yang efektif, terutama dalam mengidentifikasi bahaya melalui proses Learning From Incidents. Penggunaan data mining dalam keselamatan konstruksi mulai banyak digunakan dalam penelitian. Namun, diperlukan model yang dapat membantu praktisi mengembangkan data mining untuk mengidentifikasi bahaya di proyek konstruksi. CRISP-DM sebagai standar de facto model data mining dapat diimplementasikan untuk menjadi standar dan pedoman bagi praktisi. Tujuan utama penelitian ini adalah mengembangkan model CRISP-DM untuk improvement proses dalam mengidentifikasi bahaya proyek konstruksi serta memperoleh Learning From Incidents Database yang terbentuk dengan studi kasus pekerjaan proyek konstruksi struktur atas jalan layang beton. Association Rule Mining menjadi metode data mining yang digunakan dalam penelitian ini untuk mendapatkan aturan asosiasi antara aktivitas pekerjaan dan bahaya yang terjadi. Hasil penelitian menunjukkan terdapat langkah-langkah praktis yang dapat dilakukan untuk mengembangkan model CRISP-DM dalam identifikasi bahaya konstruksi. Percobaan implementasi CRISP-DM tersebut menghasilkan database yang menunjukan 5 aturan asosiasi dengan rerata akurasi 51,2% dari 112 kejadian kecelakaan konstruksi di Indonesia. Pakar keselamatan konstruksi juga menilai database dari aturan asosiasi yang terbentuk telah sesuai dengan kondisi aktual secara umum dan model CRISP-DM yang diajukan dapat meningkatkan Learning From Incidents pada industri konstruksi. Namun, peningkatan sistem pelaporan, investigasi, serta kesadaran pentingnya keselamatan masih perlu ditingkatkan sebelum model CRISP-DM dapat diterapkan di industri konstruksi Indonesia. ......The construction industry is a high-risk industry and the most dangerous industry in the world. This drives the need for hazard identification through the Learning from Incidents process. The use of data mining in construction safety is starting to be widely used in research. However, a model is needed that can help practitioners develop data mining to identify hazards in construction projects. The main objective of this research is to develop a CRISP-DM model for process improvement in identifying construction project hazards and obtain a Learning from Incidents Database formed with a case study of concrete elevated road structure construction work. The data mining method used in this research is Association Rule Mining. The results showed that there are practical steps that can be taken to develop the CRISP-DM model. The implementation of the model produced 5 association rules with an average accuracy of 51.2% of 112 construction accidents. Experts assessed that the association rules formed are in accordance with the actual conditions and the CRISP-DM model can improve Learning from Incidents in the construction industry. However, improvements in reporting systems, investigations, and safety awareness still need to be improved before the model can be applied in Indonesian construction industry.
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library