Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 18 dokumen yang sesuai dengan query
cover
Semyonov, L.
Moscow: Mir Publishers, 1967
621.354 SEM s
Buku Teks  Universitas Indonesia Library
cover
Mantell, C.L. [Charles Letnam], 1897-
New York: McGraw-Hill, 1983
621.312 423 MAN b
Buku Teks SO  Universitas Indonesia Library
cover
Mohan, Ned
"This text describes a variety of practical and emerging power electronic converters made feasible by the new generation of power semiconductor devices. Topics include an expanded discussion of diode rectifiers and thyristor converters as well as chapterson heat sinks and magnetic components."
Hoboken, NJ: John Wiley & Sons, 2003
621MOHP001
Multimedia  Universitas Indonesia Library
cover
Liu, Zhaoping
Boca Raton: CRC Press, Taylor &​ Francis Group, 2015
621.31 LIU g
Buku Teks SO  Universitas Indonesia Library
cover
New York: McGraw-Hill, 1984
R 621.312429 HAN
Buku Referensi  Universitas Indonesia Library
cover
Lenk, John D.
Boston: Butterworth-Heinemann, 1996
621.317 LEN s
Buku Teks SO  Universitas Indonesia Library
cover
Jordie Masseno Alfredy
"ABSTRACT
Sodium-ion batteries (SIBs) is a strong contender for as a new battery system over lithium-ion batteries (LIBs) for rechargeable large-scale energy storage applications. Cathode materials for SIBs have been well developed. Anode materials, on the other hand, are still under development. Transition metal oxides cumulating Na ions by chemically conversion reactions and intercalation mechanism have made extensive research interest due to its high theoretical capacity. In particular, tin dioxide has been primarily studied as an auspicious anode material for both LIBs and SIBs. However, significant volume changes take place during battery charging and discharging, especially in SIBs. It has been well documented that the electrochemical properties of the material can be enhanced by using several strategies, such as nanostructuring and doping of a second element, such as cobalt (Co). In this study, porous CoSnO3 nanocubes were synthesised, characterised, and tested against SIBs. The material yielded a performance of 306.7 mAhg-1 sodium-ion storage capacity at a current density of 50 mAg-1, which is quite a high number when compared with other anode material such as nickel oxide (300 mAhg-1), tin dioxide (170 mAhg-1), and cobalt oxide (153.8 mAhg-1).

ABSTRAK
Baterai sodium-ion atau Sodium-Ion Batteries (SIBs) adalah pesaing kuat untuk sebagai sistem baterai baru dibandingkan baterai lithium-ion atau Lithium-Ion Batteries (LIBs) untuk aplikasi penyimpanan energi skala besar yang dapat diisi ulang. Bahan katoda untuk SIB telah dikembangkan dengan baik. Bahan anoda, di sisi lain, masih dalam pengembangan. Oksida logam transisi yang mengakumulasi ion-ion Na dengan reaksi konversi kimia dan mekanisme interkalasi telah menghasilkan minat penelitian yang luas karena kapasitas teoretisnya yang tinggi. Secara khusus, timah dioksida telah dipelajari terutama sebagai bahan anoda yang menguntungkan baik untuk LIB maupun SIB. Namun, perubahan volume yang signifikan terjadi selama pengisian dan pemakaian baterai, terutama pada SIB. Telah didokumentasikan dengan baik bahwa sifat elektrokimia material dapat ditingkatkan dengan menggunakan beberapa strategi, seperti nanostrukturisasi dan doping elemen kedua, seperti kobalt (Co). Dalam penelitian ini, nanocube CoSnO3 berpori disintesis, dikarakterisasi, dan diuji terhadap SIB. Bahan ini menghasilkan kinerja 306,7 mAhg-1 kapasitas penyimpanan sodium-ion pada kepadatan arus 50 mAg-1, yang jumlahnya cukup tinggi jika dibandingkan dengan bahan anoda lainnya seperti oksida nikel (300 mAhg-1), timah dioksida (170 mAhg-1), dan kobal oksida (153,8 mAhg-1)."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anggi Nabila
"Saat ini, belum adanya data yang secara spesfik dan fakta menggambarkan berapa timbulan limbah baterai yang dihasilkan di Jakarta khusususnya Kota Jakarta Timur. Keterbatasan data seringkali menyulitkan pihak pendaur ulang untuk menentukan kapisitas dari fasilitas daur ulang limbah baterai. Dengan demikian, dibutuhkannya penelitian untuk mengukur timbulan dan komposisi jenis limbah baterai sehingga dapat dilakukannya perencanaan fasilitas daur ulang limbah baterai Skala Wilayah di Jakarta Timur. Timbulan dan komposisi jenis limbah baterai dapat diperoleh dengan sampling di 60 rumah tangga selama 30 hari. Sedangkan kapasitas daur ulang limbah baterai dapat diperoleh melalui perhitungan proyeksi penduduk dan proyeksi timbulan limbah baterai yang ada di Jakarta Timur selama 10 Tahun mendatang (2024-2034). Berdasarkan hasil sampling 60 KK, diperoleh timbulan limbah baterai sebesar 3398,88 gram dengan jumlah baterai sebanyak 193 unit. Jenis baterai yang terkumpul antara lain: baterai ukuran AA sebanyak 135 unit, AAA sebanyak 48 unit, C sebanyak 2 unit, D sebanyak 2 unit, baterai kancing/baterai jam sebanyak 3, baterai li-ion sebanyak 1 unit, baterai Hp sebanyak 1 unit, dan powerbank sebanyak 1 unit. Timbulan limbah baterai AA di Jakarta Timur diperoleh sebesar 68 ton/tahun, sehingga kapasitas pengolahan limbah baterai yang direkomendasikan adalah 85 ton/tahun dengan pendapatan kotor untuk pemulihan Zn sebesar Rp440.123.254 per Tahun dan untuk pemulihan Mn sebesar Rp855.740 per tahun. Berdasarkan hasil tersebut, dapat diketahui bahwa daur ulang baterai primer/sekali pakai memiliki potensi ekonomi yang dapat menguntungkan perekonomian dan lingkungan.

Currently, there is no specific and factual data depicting the amount of battery waste generated in Jakarta, particularly in East Jakarta. This data limitation often makes it difficult for recyclers to determine the capacity of battery waste recycling facilities. Therefore, research is needed to measure the quantity and composition of battery waste to enable the planning of regional-scale battery waste recycling facilities in East Jakarta. The quantity and composition of battery waste can be obtained by sampling 60 households over 30 days. The recycling capacity of battery waste can be determined through population projection and battery waste projection in East Jakarta over the next 10 years (2024-2034). Based on the sampling of 60 households, a total of 3,398.88 grams of battery waste was obtained, comprising 193 battery units. The collected batteries included 135 AA batteries, 48 AAA batteries, 2 C batteries, 2 D batteries, 3 button/watch batteries, 1 li-ion battery, 1 mobile phone battery, and 1 power bank. The annual AA battery waste in East Jakarta was estimated at 68 tons. Therefore, the recommended battery waste processing capacity is 85 tons per year, with a gross income for Zn recovery of Rp440,123,254 per year and for Mn recovery of Rp855,740 per year. Based on these results, it can be concluded that recycling primary/single-use batteries has the economic potential to benefit both the economy and the environment."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Huggins, Robert A.
"- Explains the fundamentals of all major energy storage methods, from thermal and mechanical to electrochemical and magnetic
- Clarifies which methods are optimal for important current applications, including electric vehicles, off-grid power supply, and demand response for variable energy resources such as wind and solar
- New and updated material focuses on cutting-edge advances including liquid batteries, sodium/sulfur cells, emerging electrochemical materials, natural gas applications and hybrid system strategies
This book explains the underlying scientific and engineering fundamentals of all major energy storage methods. These include the storage of energy as heat, in phase transitions and reversible chemical reactions, and in organic fuels and hydrogen, as well as in mechanical, electrostatic and magnetic systems. Updated coverage of electrochemical storage systems considers exciting developments in materials and methods for applications such as rapid short-term storage in hybrid and intermittent energy generation systems, and battery optimization for increasingly prevalent EV and stop-start automotive technologies. This nuanced coverage of cutting-edge advances is unique in that it does not require prior knowledge of electrochemistry. Traditional and emerging battery systems are explained, including lithium, flow and liquid batteries. Energy Storage provides a comprehensive overview of the concepts, principles and practice of energy storage that is useful to both students and professionals."
Switzerland: Springer International Publishing, 2016
e20509981
eBooks  Universitas Indonesia Library
cover
David Ferdiyanto
"Baterai ion-sodium (SiB) saat ini terus dikembangkan sebagai alternatif pengganti baterai ion-litium (LiB) yang lebih ekonomis dan ramah lingkungan. Pada penelitian ini dilakukan karakterisasi dan evaluasi bahan mangan nikel berdoping magnesium yang disintesis secara hidrotermal untuk katoda baterai ion-sodium sebagai alternatif pengganti baterai ion-litium. Hasil yang didapatkan menunjukkan bahwa suhu autoklaf pada proses hidrotermal sangat mempengaruhi sintesis bahan katoda dimana suhu 250oC merupakan suhu optimum proses sintesis bahan. Hal ini dibuktikan melalui  karakterisiasi senyawa kristal bahan dengan uji x-ray diffraxtion (XRD) dan juga pengamatan scanning electron microscope (SEM). Hasil pengujian electric impedance spectroscopy (EIS) menunjukkan bahwa penambahan unsur magnesium sebagai doping pada katoda memberikan hambatan yang lebih rendah dibandingkan tanpa magnesium, sehingga meningkatkan konduktifitas baterai sebesar 9,02%. Tegangan sel mampu mencapai 2,00 V pada pengisian awal dan berada pada rentang 1,50-4,30 V yang terlihat dari hasil uji Cyclic Voltametry (CV). Kapasitas baterai katoda berdoping magnesium (132,12 mAh/g pada saat pengisian dan 14,53 mAh/g pada saat pengosongan) lebih tinggi dibandingkan katoda tanpa magnesium (45,86 mAh/g pada saat pengisian dan 2,37 mAh/g pada saat pengosongan) pada C-rate yang rendah.

Sodium-ion batteries (SiB) are currently being developed as a more economical and environmentally friendly alternative to lithium-ion batteries (LiB). This study involves the characterization and evaluation of manganese nickel materials doped with magnesium, synthesized hydrothermally for use as cathodes in sodium-ion batteries as an alternative to lithium-ion batteries. The results indicate that the autoclave temperature during the hydrothermal process significantly affects the synthesis of the cathode material, with 250°C being the optimal temperature for material synthesis. This is evidenced by the characterization of the material using x-ray diffraction (XRD) and scanning electron microscope (SEM) observations. Electric impedance spectroscopy (EIS) testing shows that adding magnesium as a dopant to the cathode results in lower resistance compared to the one without magnesium, thereby increasing battery conductivity by 9.02%. The cell voltage can reach 2.00 V during initial charging and ranges from 1.50 to 4.30 V, as shown by the Cyclic Voltammetry (CV) test results. The magnesium-doped cathode battery capacity (132.12 mAh/g during charging and 14.53 mAh/g during discharging) is higher than the undoped cathode (45.86 mAh/g during charging and 2.37 mAh/g during discharging) at a low C-rate."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2   >>