Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Ria Novita Suwandani
Abstrak :
Penelitian ini bertujuan untuk menghitung cadangan kerugian dengan menerapkan regresi Gaussian Process untuk memperkirakan klaim di masa mendatang. Pemodelan dilakukan pada data asuransi kendaraan bermotor. Hasil estimasi memperlihatkan bahwa metode Regresi Proses Gaussian sangat fleksibel dan dapat diterapkan tanpa banyak penyesuaian. Hasil ini juga dibandingkan dengan metode Chain Ladder. ......This study aims to calculate the allowance for losses by applying Gaussian Process regression to estimate future claims. Modeling performed on motor vehicle insurance data. The estimation results show that the Gaussian Process Regression method is very flexible and can be applied without much adjustment. These results were also compared with the Chain Ladder method.
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Caroline Woenarso
Abstrak :
Tugas dari seorang aktuaris untuk asuransi kendaraan bermotor adalah menentukan tarif yang adil bagi para pemegang polis. Salah satu metode penentuan tarif atau premi dalam asuransi kendaraan bermotor adalah dengan sistem bonus-malus. Besar tarif atau premi disesuaikan setiap tahunnya dengan mempertimbangkan jumlah klaim yang telah diajukan dan level sistem bonus-malus dari pemegang polis pada tahun sebelumnya atau dikenal sebagai experience rating. Besar premi tersebut disesuaikan dengan menghitung relativitas premi, yakni koefisien penyesuaian premi dari premi dasar pemegang polis yang berpindah level pada sistem bonus-malus. Pada sistem bonus-malus tradisional, terdapat dua permasalahan yang kerap ditemui, yakni tidak diperhitungkannya besar klaim dan adanya peluang bagi pemegang polis untuk meninggalkan polis asuransi setelah mengajukan klaim. Hal ini menyebabkan adanya ketidakadilan antar pemegang polis yang melakukan klaim dengan besaran yang rendah dan tinggi karena diberikan penalti kenaikan premi (malus) yang sama. Oleh karena itu, tugas akhir ini mengeliminasi kedua kekurangan sistem bonus malus dengan mempertimbangkan jumlah klaim, besar klaim yang dikategorikan ke dalam berbagai tipe klaim, dan memberlakukan deductible yang bervariasi pada level-level zona malus pada sistem bonus-malus. Rantai Markov digunakan dalam aturan transisi mengenai mekanisme perpindahan level para pemegang polis yang memengaruhi perhitungan besar preminya. Kemudian penelitian ini menganalisis pengaruh dari penerapan deductible bervariasi yang bergantung pada tipe klaim terhadap besar premi untuk berbagai level dalam sistem bonus-malus yang telah dimodifikasi. Hasil analisis menunjukkan bahwa dengan menggunakan sistem bonus-malus yang telah dimodifikasi tersebut dapat menghasilkan besar premi antar level yang lebih seimbang, khususnya untuk level zona malus, namun tetap tidak merugikan para pemegang polis pada level zona bonus sehingga lebih menarik dibandingkan sistem bonus-malus tradisional. ......Primary job of an actuary for automobile insurance is to determine a tariff structure that are fair among all policyholders. One of the methods that can be used to determine the tariff structure of an automobile insurance is with the bonus-malus system. The tariff or premium would be adjusted annually by taking the number of claims that were submitted by the policyholders in the previous year into the consideration, or known as experience rating. The amount of premium would be adjusted by calculating the premium relativity, which is the premium adjustment coefficient of the basic premium of the policyholders who change their level in the bonus-malus system. In the traditional bonus-malus system, there are two problems that are commonly occurred, which are not taking the amount of claim into the consideration in the system, and there is a possibility that policyholders may leave their insurance policy after claiming the benefit of the automobile insurance. These problems may lead into an unfair bonus-malus system between the policyholders as they would be given a same premium increment penalty (malus), no matter the amount of claims were reported. Thus, this last assignment would eliminate both problems of the bonus-malus system by considering the amount of claim into the system, and propose varying deductibles to be implemented for some levels of the malus zone in the system. Markov chain is used as the transition rule regarding the policyholders’ level movement mechanism, which affects the calculation of the amount of the premium. This study would also analyze the effect of implementing varying deductibles that are depended on the type of the claim towards the amount of premium for some levels in the modified bonus-malus system. The results of the analysis show that by using the modified bonus-malus system could produce a more balanced amount of premium among level that are in the malus zone and does not give an unfair treatment for policyholders that are in the bonus zone. Hence, this bonus-malus system is more attractive that the traditional bonus-malus system
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Arief Fauzan
Abstrak :
Tren kenaikan frekuensi dan severitas klaim untuk klaim asuransi kendaraan bermotor menyebabkan dibutuhkannya metode otomatisasi baru untuk memprediksi probabilitas seorang pemegang asuransi kendaraan akan mengajukan klaim jika diberikan data historis mengenai pemegang asuransi tersebut, agar perusahaan asuransi dapat memilah dan memproses lebih lanjut para pemegang polis yang kemungkinan mengajukan klaimnya tinggi. Masalah ini dapat diselesaikan dengan berbagai metode, salah satunya dengan machine learning, yang mengkategorisasikan masalah tersebut sebagai masalah supervised learning. Volume data yang besar dan banyaknya kemungkinan adanya missing values pada data pemegang asuransi menjadi dua aspek yang mempengaruhi pemilihan model machine learning yang tepat. XGBoost merupakan model gradient boosting machine learning baru yang dapat mengatasi missing value dan volume data besar sehingga XGBoost diklaim merupakan metode yang tepat untuk digunakan pada masalah tersebut. Dalam skripsi ini akan diaplikasikan metode XGBoost kepada masalah ini, dan akan dibandingkan hasilnya dengan berbagai metode machine learning lainnya, seperti AdaBoost, Stochastic Gradient Boosting, Random Forest, Neural Network, dan Logistic Regression. ......The increasing trend of claim frequency and claim severity for auto-insurance result in a need of new methods to predict whether a policyholder will file an auto-insurance claim or not, given historical data about said policyholder, so that insurance industries can further process policyholders with high claim probability. This problem can be solved with many methods, one of which is machine learning, which categorizes this problem as a supervised learning problem. The high data volume and the existence of missing values on a policyholders historical data are aspects that the chosen machine learning model must be able to handle. XGBoost is a novel gradient boosting machine learning problem that is able to inherently handle missing values and high volume of data, which should make the model suitable for this problem. In this thesis, XGBoost will be applied to this problem, and its performance will be compared by other machine learning models, such as AdaBoost, Stochastic Gradient Boosting, Random Forest, Neural Network, and Logistic Regression.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Imitatio Kristo Konstantino
Abstrak :
ABSTRACT
Perusahaan asuransi berperan penting memberikan proteksi terhadap segala kemungkinan kerugian bagi para nasabah pemilik kendaraan bermotor. Dalam asuransi kendaraan bermotor, terdapat sebuah sistem yang bernama no-claim bonus yang memberikan bonus pada kontrak berikutnya jika nasabah tidak melakukan claim selama kontrak berlangsung. Akibatnya, timbul masalah dimana nasabah akan dihadapkan pada pilihan untuk melaporkan atau tidak melaporkan lossnya, bergantung pada indemnitas yang didapat dan besar bonus yang ditetapkan. Untuk menghadapi masalah tersebut, diperlukan desain asuransi yang tepat agar nasabah dan perusahaan merasa tidak dirugikan. Tugas akhir ini membuat formula matematis yang dapat memaksimalkan ekspektasi kepuasaan nasabah terhadap konsumsi kekayaan pada kontrak asuransi tetapi tetap memberikan keuntungan pada perusahaan. Selanjutnya, menggunakan formula yang dibentuk, diuraikan beberapa kontrak asuransi yang dapat dibuat, bergantung pada besar premi dan bonus. Pada bagian akhir, dilakukan dua simulasi numerik, yaitu simulasi untuk menggambarkan perhitungan matematis yang dilakukan dan simulasi dalam menentukan produk nasabah.
ABSTRACT
Insurance companies have an important role in providing protection against all possible losses for customers who own motorized vehicle is very necessary. In motor vehicle insurance, there is a system called no-claim bonus that give bonus for the next contract if no claim has been made by the insured during his whole lifetime of the contract. As a result, the insured faces two choices, reporting or not reporting his loss, depends on his compensation and bonus. Thus, the optimal insurance design is needed so that insured and insurer do not experience losses. This thesis make a mathematical formula that maximize insured satisfication for his wealth consumption in insurance contract but still give benefit for the insurer. Next, several insurance contracts will be formed depend on the amount of premium and bonus. Then, two numerical simulations will be done in the end of this thesis. First is simulation to describe mathematical calculations and second is simulations in determining insured products.
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Vanessa Tishi Chandra
Abstrak :
Asuransi kendaraan bermotor diperlukan untuk perlindungan dari risiko kerugian finansial akibat kerusakan, kecelakaan, ataupun pencurian kendaraan. Dalam industri asuransi kendaraan bermotor, terdapat sistem penentuan besar net premi untuk pemegang polis yang dikenal dengan sistem bonus malus. Sistem ini merupakan sistem experience rating yang artinya dalam melakukan penentuan besar net premi, akan dilihat sejarah klaim yang dilakukan oleh pemegang polis. Bonus merupakan penurunan premi apabila seorang pemegang polis tidak mengajukan klaim sama sekali dalam satu periode dan malus merupakan kenaikan premi apabila seorang pemegang polis mengajukan satu atau lebih klaim. Pada tugas akhir ini, dilakukan pemodelan frekuensi klaim asuransi kendaraan bermotor dengan model binomial negatif, Good Risk/Bad Risk, dan Poisson-Inverse Gaussian. Parameter masing-masing model ditaksir menggunakan metode momen. Selanjutnya, dilakukan penentuan besar net premi yang harus dibayarkan pemegang polis berdasarkan model-model yang telah dibentuk. Seleksi model dilakukan dengan menggunakan chi-square goodness of fit test. Penentuan besar net premi dilakukan dengan metode expected value principle, dimana premi dihitung dengan ekspektasi posterior dari model. Hasil aplikasi pada data menunjukan bahwa model yang berbeda menghasilkan besar premi yang berbeda pula dan semakin besar frekuensi klaim yang dilakukan oleh seorang pemegang polis di masa lampau, maka semakin besar pula premi yang harus dibayarkan oleh pemegang polis. ......Automobile insurance is needed to protect policyholder against the risk of financial loss due to damage, accidents or vehicle theft. In automobile insurance industry, there is a system to determine the amount of net premiums for policyholders known as the bonus malus system (BMS). This system is an experience rating system, which means the amount of the net premium depends on policyholder's claim history. Bonus is a decrease in premium if a policyholder does not initiate any claim at all, in one period and malus is an increase in premium if a policyholder initiates one or more claims. In this final project, the frequency of automobile insurance claims was modelled with a negative binomial, Good Risk/Bad Risk, and Poisson-Inverse Gaussian models. The parameters of each model are estimated using the moment method. Model selection is carried out using the chi-square goodness of fit test. Furthermore, the amount of net premium to be paid by policyholders is determined based on the models that have been established. Determination of the amount of net premium is carried out using the expected value principle method, where the premium is calculated based on the posterior expectation. The data application results show that different models produce different premiums and the greater the frequency of claims initiated by policyholders in the past, the greater the premium that must be paid by policyholders.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library