Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 130373 dokumen yang sesuai dengan query
cover
Alfina Wijaya
"Premi adalah sejumlah uang yang ditetapkan oleh perusahaan asuransi atau perusahaan reasuransi dan disetujui oleh pemegang polis untuk dibayarkan. Hal tersebut sesuai dengan perjanjian asuransi atau perjanjian reasuransi. Dalam penetapan tarif premi asuransi kendaraan bermotor, perusahaan asuransi memperhitungkan eksposur risiko yang diterima kendaraan bermotor untuk mengestimasi jumlah klaim. Pada umumnya, perusahaan asuransi kendaraan bermotor hanya memperhitungkan faktor durasi kontrak asuransi dalam memperhitungkan eksposur risiko. Namun, pada kenyataannya terdapat faktor lain yang memengaruhi risiko terjadinya kecelakaan, salah satunya adalah jarak tempuh kendaraan. Faktor risiko jarak tempuh telah dipertimbangkan pada asuransi Pay-As-You-Drive (PAYD). Pada penelitian ini, dilakukan penghitungan eksposur risiko pada kendaraan bermotor dengan memperhitungkan jarak tempuh kendaraan dan durasi kontrak asuransi. Tujuannya adalah untuk melihat efek simultan yang dihasilkan oleh jarak tempuh dan durasi kontrak asuransi sebagai kovariat terhadap variabel respons jumlah klaim menggunakan Generalized Additive Model (GAM). GAM digunakan untuk menangkap kemungkinan adanya hubungan non-linear antara kovariat dengan variabel respons. Dalam penelitian ini, GAM dikonstruksi dengan cubic splines dan untuk mengestimasi koefisien model, digunakan metode Penalized Iteratively Reweighted Least Squares (PIRLS). Setelah koefisien model diestimasi, GAM dapat digunakan untuk memprediksi nilai frekuensi klaim. Nilai frekuensi tersebut dapat dimanfaatkan untuk menentukan relativitas harga premi terhadap reference premium. Reference premium adalah nilai premi yang diterapkan ketika diasumsikan tidak ada pengaruh dari kovariat. Selanjutnya, GAM diimplementasikan pada data klaim asuransi kendaraan bermotor untuk menentukan tarif premi.

Premium is an amount of money set by an insurance company or reinsurance company and agreed upon by the policyholder to be paid based on an insurance or reinsurance policy. In establishing premium rates for motor vehicle insurance, insurance companies consider the risk exposure associated with motor vehicles to calculate the estimated number of claims. Generally, motor vehicle insurance companies only consider the duration of the insurance contract when calculating risk exposure. However, there are other factors that influence the risk of accidents, one of which is the distance traveled by the vehicle. The mileage risk factor has been considered in Pay-As-You-Drive (PAYD) insurance. In this study, risk exposure in motorized vehicles was calculated by considering the distance traveled by the vehicle and the duration of the insurance contract. The objective is to examine the simultaneous effects of mileage and insurance contract duration as covariates on the response variable of claim amount using the Generalized Additive Model (GAM). GAM is used to capture the possibility of a non-linear relationship between the covariates and the response variable. In this study, GAM is constructed with cubic splines and to estimate the model coefficients, the Penalized Iteratively Reweighted Least Squares (PIRLS) method is used. Once the model coefficients are estimated, the GAM can be used to predict claim frequency values. The frequency value can be used to determine the relativity of the premium price to the reference premium. The reference premium is the premium value that is applied when it is assumed that there is no influence from covariates. Furthermore, GAM is implemented on motor vehicle insurance claim data to determine premium rates."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muslimah Imaniati Asri
"Tesis ini membahas mengenai analisa pengaruh variabel demografi yaitu umur pemilik kendaraan bermotor dan profesi dengan mengikutsertakan beberapa variabel kontrol yang dinilai juga memiliki hubungan. Penelitian ini menggunakan metode Generalized Linear Method dan memberikan hasil yang menunjukkan bahwa, hanya variabel umur pemilik kendaraan bermotor yang signifikan terhadap variabel severitas klaim, frekuensi klaim dan premi murni. Semakin bertambah usia seseorang akan berpengaruh terhadap penurunan premi dikarenakan semakin tinggi tingkat kehati-hatiannya sehingga premi yang diberikan semakin rendah.

This thesis discusses the analysis of the influence of demographic variables such as age and
profession of motor vehicle owners . by including some of the control variables assessed also has
hubunagn . This research method menggunazan Generalized Linear Method and results showed
that only age variable motor vehicle owners are significant to the variable severity of claims ,
claim frequency and pure premium . The more mature person will affect the premium decline
due to the higher level of caution that given the lower premiums"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2016
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Naifi Naufal
"Setiap individu memiliki risiko kematian yang berbeda. Risiko Kematian untuk setiap individu dipengaruhi oleh beberapa faktor. Faktor risiko yang dapat diamati adalah faktor underwriting. Perbedaan tingkat kematian untuk setiap individu akan memengaruhi premi asuransi jiwa. Untuk membebankan premi secara adil bagi setiap pemegang polis, perusahaan asuransi memerlukan model yang dapat mengukur mortalitas dari faktor underwriting. Dalam penelitian ini, tingkat mortalitas yang dipengaruhi oleh faktor underwriting, dimodelkan dengan menggunakan Generalized Linear Model (GLM) dan menaksir probabilitas kematian. Probabilitas kematian yang didapatkan, digunakan untuk menghitung premi asuransi jiwa. Pemegang polis asuransi jiwa berjangka satu tahun dengan gender yang sama mempunyai premi asuransi yang sama besar. Sedangkan untuk pemegang polis asuransi jiwa dwiguna satu tahun dengan gender yang berbeda mempunyai premi asuransi yang sama besar.

Each individual has a different risk of death. The risk of death for each individual is influenced by several factors. The risk factors that can be observed are underwriting factors. The difference in mortality rates for each individual will affect life insurance premiums. To charge premiums fairly for each policyholder, insurance companies need a model that can measure mortality from underwriting factors. In this study, the mortality rate influenced by underwriting factors was modeled using the Generalized Linear Model (GLM) and estimated the probability of death. The probability of death obtained is used to calculate life insurance premiums. One-year life insurance policyholders with the same gender have the same insurance premium. Whereas for one-year dual-purpose life insurance policyholders with different genders have the same insurance premium.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T54412
UI - Tesis Membership  Universitas Indonesia Library
cover
Jeremiah Marcel Eliasaputra
"Frekuensi klaim umumnya dimodelkan dengan Generalized Linear Model dan model-model lainnya yang serupa seperti regresi Poisson dan regresi Logistik. Akan tetapi, model-model tersebut tidak memperhitungkan adanya autokorelasi spasial, atau terjadinya hubungan yang erat antara daerah-daerah yang berdekatan, sedangkan frekuensi klaim dibuktikan bahwa ia dipengaruhi oleh lokasi yang diamati. Model spasial Besag-York-MolliƩ (BYM) dapat diimplementasikan ke dalam data klaim pada beberapa daerah yang berdekatan dan memiliki potensi untuk menghasilkan prediksi yang lebih akurat dibanding dengan model-model non-spasial. Akan dilakukan penelitian terhadap model BYM untuk menjelaskan kegunaan model tersebut dan memberikan alternatif bagi model-model yang biasa digunakan untuk pemodelan frekuensi klaim. Untuk mengevaluasi performa dari model BYM, maka model tersebut akan diimplementasikan kepada data simulasi, kemudian efektivitas dari model juga akan dibandingkan terhadap model-model lainnya menggunakan ukuran Deviance Information Criterion atau DIC. Hasil analisis menunjukkan bahwa model BYM memiliki potensi untuk menjadi model yang paling akurat dalam memprediksikan frekuensi klaim pada daerah-daerah dengan autokorelasi spasial yang kuat.

Claims frequency modelling is usually done using Generalized Linear Models or other similar models such as Poisson regression and Logistik Regression. However these models do not take in account spatial autocorrelation, or the event in which neighboring areas would have a close relationship, even though claims frequency has been proven to be influenced by the observed locations. The spatial Besag-York-MolliƩ model can be implemented in claims data for several neighboring areas and has potential to be more accurate than non-spatial models in predicting claims frequency. Research towards the BYM model will be done to explain the usage of the model and provide an alternative to other models usually used for claims frequency. To evaluate the effectiveness of the model, the BYM model is then implemented into simulation data, and its effectiveness is compared to other models using the Deviance Information Criterion or DIC. The result of the analysis shows that the BYM model has potential to be the best model for cases that have a strong spatial relationship."
Depok: Fakultas Ilmu Matematika dan Ilmu Pengetahuan Alam Budaya Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raden Roro Shalsabila Alwaafi Putriandra
"Dalam studi statistik, mengukur ketergantungan antar variabel sering kali diperlukan untuk memahami perilaku dari variabel-variabel tersebut. Pada skripsi ini, untuk merepresentasikan ketergantungan antar variabel akan digunakan model copula. Copula diterapkan dalam memodelkan ketergantungan pada studi keuangan dan statistik, bahkan diperkenalkan dalam studi aktuaria untuk menghitung total kerugian pada industri asuransi kendaraan bermotor. Perusahaan asuransi, sebagai pihak yang menyediakan asuransi kendaraan bermotor, harus bisa memprediksi kemungkinan kerugian yang akan terjadi guna memprediksi kewajiban dan menyusun strategi perusahaan di masa depan. Total kerugian pada asuransi kendaraan bermotor dapat dihitung berdasarkan dua variabel, yaitu frekuensi klaim dan severitas klaim. Kedua variabel tersebut memiliki distribusi yang berbeda dan terkadang ditemukan ketergantungan di antara keduanya sehingga diperlukan model yang dapat menghubungkannya. Dalam beberapa kasus, kerugian juga dipengaruhi oleh faktor-faktor risiko lainnya yang disebut sebagai kovariat. Salah satu metode analisis statistik untuk menggabungkan dua distribusi data berbeda yang saling berhubungan beserta kovariat adalah dengan model copula berbasis regresi. Hal ini dilakukan dengan menggabungkan marginal Generalized Linear Model dari frekuensi dan severitas klaim. Dengan karakteristik yang berbeda dari kedua data maka model dibentuk dengan pendekatan mixed copula. Copula yang digunakan adalah copula Gaussian dan estimasi parameter dilakukan dengan Maximization by Parts (MBP). Berdasarkan parameter yang diperoleh, dapat disimpulkan bahwa terdapat ketergantungan positif antara frekuensi dan rata-rata severitas klaim. Dengan mempertimbangkan unsur dependensi pada frekuensi dan rata-rata severitas klaim, diperoleh nilai ekspektasi total kerugian yang lebih besar dibandingkan tanpa mempetimbangkan unsur dependensi.

In statistical studies, measuring dependencies between variables is often necessary to understand the behavior of those variables. In this thesis, to represent the dependency between variables, the copula model will be used. Copula is applied to modeling dependencies in financial and statistical studies and has even been introduced in actuarial studies to calculate total losses in the motor vehicle insurance industry. Insurance companies, as parties that provide motor vehicle insurance, must be able to predict possible losses that will occur in order to predict liabilities and develop company strategies in the future. Total losses in motor vehicle insurance can be calculated based on two variables, namely claim frequency and claim severity. These two variables have different distributions, and sometimes dependencies are found between them, so a model is needed that can relate them. In some cases, losses are also influenced by other risk factors known as covariates. One statistical analysis method for combining two different, interconnected data distributions and covariates is a regression-based copula model. This is done by combining marginal generalized linear models of claim frequency and severity. With the different characteristics of the two data sets, the model was formed using a mixed copula approach. The copula used is a Gaussian copula, and parameter estimation is done using Maximization by Parts (MBP). Based on the parameters obtained, it can be concluded that there is a positive dependence between the frequency and average claim severity. By considering the dependency element on the frequency and average severity of claims, the expected total loss value is greater than without considering the dependency element."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wawan Maryanto
"Skripsi ini membahas masalah dalam asuransi kerugian mobil, yaitu mencari nilai tingkat premi bagi suatu group peserta yang bergabung dengan group lain membentuk konsorsium Asuransi Kolektif. Proses penawaran tingkat premi yang kemudian diikuti dengan penertapan tingkat premi bagi suatu group peserta Asuransi Kolektif diselesaikan dengan bantuan Teori Game.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1996
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raras Minerva
"Mayoritas kegiatan pembelian kendaraan bermotor yang dilakukan oleh masyarakat di Indonesia menggunakan jasa perusahaan pembiayaan konsumen. Masyarakat selaku debitur harus menyetujui isi perjanjian pembiayaan konsumen yang telah disediakan oleh perusahaan pembiayaan, dimana klausulanya bersifat baku sehingga debitur tidak memiliki posisi tawar atas syarat dan kondisi perjanjian termasuk dalam hal kewajiban melakukan penutupan asuransi. Seringkali ditemukan keluhan konsumen terhadap persyaratan kewajiban tersebut yang dirasa tidak sesuai dengan perundang-undangan yang berlaku, serta konsumen tidak mendapat kejelasan terkait penyelesaian klaim dan penggantian kerugian bila terjadi risiko di kemudian hari. Atas dasar hal tersebut dilakukan penelitian yang bersifat eksplanatoris untuk menjelaskan hal-hal terkait aspek perasuransian dalam perjanjian pembiayaan konsumen.
Hasil penelitian ini menunjukkan bahwa tindakan perusahaan pembiayaan yang mewajibkan konsumen untuk melakukan penutupan asuransi pada perusahaan tertentu tidak bertentangan dengan peraturan perundang-undangan yang berlaku. Pembayaran ganti kerugian dalam hal ini langsung diberikan kepada perusahan pembiayaan karena kedudukan konsumen dikuasakan kepada perusahaan pembiayaan. Perusahaan asuransi juga wajib untuk mengcover ganti kerugian terhadap objek pembiayaan selama jangka waktu pertanggungan tersebut berlangsung meskipun pembayaran angsuran menunggak. Dengan demikian pelaku usaha baik perusahaan pembiayaan maupun perusahaan asuransi wajib memberikan penjelasan terkait isi perjanjian, maksud dan tujuan, serta kedudukan dan hak dan kewajiban para pihak sehingga tidak ada yang merasa dirugikan. Sebaliknya konsumen sebelum menyetujui perjanjian harus memiliki pemahaman yang baik atas klausul-klausul perjanjian dan bersikap kritis bila menemukan hal-hal yang kurang berkenan."
Depok: Fakultas Hukum Universitas Indonesia, 2011
S24769
UI - Skripsi Open  Universitas Indonesia Library
cover
cover
Ria Novita Suwandani
"Penelitian ini bertujuan untuk menghitung cadangan kerugian dengan menerapkan regresi Gaussian Process untuk memperkirakan klaim di masa mendatang. Pemodelan dilakukan pada data asuransi kendaraan bermotor. Hasil estimasi memperlihatkan bahwa metode Regresi Proses Gaussian sangat fleksibel dan dapat diterapkan tanpa banyak penyesuaian. Hasil ini juga dibandingkan dengan metode Chain Ladder.

This study aims to calculate the allowance for losses by applying Gaussian Process regression to estimate future claims. Modeling performed on motor vehicle insurance data. The estimation results show that the Gaussian Process Regression method is very flexible and can be applied without much adjustment. These results were also compared with the Chain Ladder method."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Imitatio Kristo Konstantino
"ABSTRACT
Perusahaan asuransi berperan penting memberikan proteksi terhadap segala kemungkinan kerugian bagi para nasabah pemilik kendaraan bermotor. Dalam asuransi kendaraan bermotor, terdapat sebuah sistem yang bernama no-claim bonus yang memberikan bonus pada kontrak berikutnya jika nasabah tidak melakukan claim selama kontrak berlangsung. Akibatnya, timbul masalah dimana nasabah akan dihadapkan pada pilihan untuk melaporkan atau tidak melaporkan lossnya, bergantung pada indemnitas yang didapat dan besar bonus yang ditetapkan. Untuk menghadapi masalah tersebut, diperlukan desain asuransi yang tepat agar nasabah dan perusahaan merasa tidak dirugikan. Tugas akhir ini membuat formula matematis yang dapat memaksimalkan ekspektasi kepuasaan nasabah terhadap konsumsi kekayaan pada kontrak asuransi tetapi tetap memberikan keuntungan pada perusahaan. Selanjutnya, menggunakan formula yang dibentuk, diuraikan beberapa kontrak asuransi yang dapat dibuat, bergantung pada besar premi dan bonus. Pada bagian akhir, dilakukan dua simulasi numerik, yaitu simulasi untuk menggambarkan perhitungan matematis yang dilakukan dan simulasi dalam menentukan produk nasabah.

ABSTRACT
Insurance companies have an important role in providing protection against all possible losses for customers who own motorized vehicle is very necessary. In motor vehicle insurance, there is a system called no-claim bonus that give bonus for the next contract if no claim has been made by the insured during his whole lifetime of the contract. As a result, the insured faces two choices, reporting or not reporting his loss, depends on his compensation and bonus. Thus, the optimal insurance design is needed so that insured and insurer do not experience losses. This thesis make a mathematical formula that maximize insured satisfication for his wealth consumption in insurance contract but still give benefit for the insurer. Next, several insurance contracts will be formed depend on the amount of premium and bonus. Then, two numerical simulations will be done in the end of this thesis. First is simulation to describe mathematical calculations and second is simulations in determining insured products."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>