Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 121630 dokumen yang sesuai dengan query
cover
Hafsa Khaerunisa Wenno
"Data mining merupakan teknik pengolahan data yang dapat digunakan untuk menemukan pola-pola kelompok dan informasi yang berguna dari kumpulan data tersebut. Salah satu teknik data mining adalah metode triclustering. Triclustering bekerja pada data tiga dimensi. Umumnya algoritma tricluster tidak efektif dalam menganalisis titik waktu pegamatan yang berjumlah sedikit. Oleh karena itu, dikembangkanlah algoritma triclustering berbasis pola yang dirancang untuk menganalisis data microarray dengan jumlah titik waktu pengamatan sedikit yaitu Order Preserving Tricluster (OPTricluster). OPTricluster membentuk tricluster dengan mengidentifikasi gen-gen yang memiliki perubahan tingkat ekspresi yang sama pada subset kondisi eksperimen disepanjang titik waktu. Setelah tricluster didapatkan, analisis Gene Ontology dibutuhkan untuk mendapatkan pemahaman anotasi gen pada hasil tricluster. Metode OPTricluster diimplementasikan pada data microarray sel kanker pankreas ASPC-1 dengan beberapa skenario menggunakan threshold yang berbeda. Skenario terbaik ditunjukkan oleh threshold optimum yang diperoleh dengan membandingkan rata-rata skor Coverage Tricluster dan Tricluster Quality Index. Kemudian tricluster dari skenario terbaik dianalisis dengan Gene Ontology (GO). Hasil penelitian ini menunjukkan bahwa metode OPTricluster berhasil membentuk tricluster dengan kinerja yang baik pada 3 pola tricluster yaitu tricluster pola constant, conserved, dan divergent. Selanjutnya analisis GO dilakukan pada tricluster terbaik pola conserved yaitu tricluster pada kelompok gen yang memiliki pola perubahan tingkat ekspresi gen yang sama saat diberikan obat JQ1 dan diperoleh informasi bahwa respon dari gen-gen sel kanker pankreas ASPC-1 dominan terlibat dalam proses metabolisme, dimana gen-gen tersebut berperan dalam perubahan tingkat ekspresi gen, selain itu letak gen-gen tersebut pun berada dalam inti sel.

Data mining is data processing techniques that can be used to find group patterns and useful information from the data set. One of the data mining techniques is the triclustering method. Triclustering works on three-dimensional data. Generally, tricluster algorithms are not effective in analyzing a small number of observation time points. Therefore, a pattern-based triclustering algorithm designed to analyze microarray data with a small number of observation time points was developed under the name Order Preserving Tricluster (OPTricluster). OPTricluster forms triclusters by identifying genes that have similar expression level changes in a subset of experimental conditions across time points. Once the tricluster is obtained, analysis with Gene Ontology is required to gain an understanding of gene annotation in the tricluster result. OPTricluster method was implemented on ASPC-1 pancreatic cancer cell microarray data with several scenarios using different thresholds. The best scenario is indicated by the optimum threshold obtained by comparing the average Tricluster Coverage and Tricluster Quality Index scores. Then the tricluster of the best scenario is analyzed with Gene Ontology (GO). The results showed that the OPTricluster method successfully formed tricluster with good performance in 3 tricluster patterns, namely constant, conserved, and divergent tricluster patterns. Furthermore, GO analysis was carried out on the best tricluster conserved pattern, namely tricluster in the gene group that has the same pattern of changes in gene expression levels when given the drug JQ1 and obtained information that the response of ASPC-1 pancreatic cancer cell genes is dominantly involved in metabolic processes, where these genes play a role in changes in gene expression levels, besides that the location of these genes is also in the cell nucleus."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dea Siska
"Metode triclustering merupakan pengembangan dari metode clustering dan biclustering. Berbeda dengan  metode clustering dan biclustering yang bekerja pada data dua dimensi, triclustering bekerja pada data tiga dimensi yang disusun dalam bentuk matriks. Matriks ini terdiri dari dimensi observasi, atribut, dan konteks. Triclustering mampu mengelompokkan ketiga dimensi tersebut secara simultan dan membentuk kelompok berupa subruang yang disebut tricluster. Metode ini umumnya diimplementasikan dalam bidang bioinformatika, terkhususnya dalam analisis data ekspresi gen tiga dimensi untuk menemukan profil ekspresi gen. Data atau matriks ini terdiri dari dimensi gen, kondisi eksperimen, dan waktu eksperimen (time point).
Salah satu algoritma triclustering, yaitu Order Preserving Triclustering (OPTricluster), adalah algoritma yang menggunakan pendekatan pattern based dan digunakan untuk menganalisis data ekspresi gen tiga dimensi yang merupakan short time series 3-8 time point). OPTricluster membentuk tricluster dengan mengidentifikasi gen-gen yang memiliki perubahan ekspresi yang sama di sepanjang time points pada sejumlah kondisi eksperimen.
Dalam penelitian ini, OPTricluster diimplementasikan pada data ekspresi gen sejumlah pasien yellow fever pasca vaksinasi dengan beberapa skenario yang menggunakan threshold yang berbeda-beda. Skenario dengan threshold yang optimum ditunjukkan oleh rata-rata skor Tricluster Diffusion terendah. Tricluster-tricluster yang dihasilkan berhasil menunjukkan hubungan biologis di antara pasien-pasien tersebut, di mana vaksin cenderung memberikan reaksi yang lebih signifikan pada pasien pria dibandingkan pasien wanita. Selain itu, ditemukan anomali pada pasien-pasien tersebut.

Triclustering method is the development of clustering method and biclustering method. Unlike clustering and biclustering that works on two-dimensional data, triclustering works on three-dimensional data that arranged in the form of a matrix consisting of observations, attributes, and contexts dimensions. Triclustering is able to group these dimensions simultaneously and form a subspace called a tricluster. This method is generally implemented in analysis of three-dimensional gene expression data to find profiles of gene expression. This data or matrix consists of genes, experimental conditions and time points dimensions.
One of the triclustering algorithms, Order Preserving Triclustering (OPTricluster), is an algorithm that uses a pattern-based approach and used to analyze short time series data (3-8 time points). The OPTricluster forms the tricluster by identifying genes that have the same expression change across time points under a number of experimental conditions. The change in expression is expressed in a rank pattern which is divided based on three types of patterns, namely constant, conserved and divergent patterns.
In this study, OPTricluster was implemented in gene expression data of yellow fever patients after vaccination using several scenarios with different thresholds. The scenario with the optimum threshold is indicated by the lowest average Tricluster Diffusion score. The resulting triclusters were successful in showing biological relationships among these patients, where the vaccine tending to have a more significant reaction in male patients than in female patients. In addition, anomalies were found in these patients.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rana Amalia Putri
"Triclustering merupakan teknik data mining untuk mengelompokkan data tiga dimensi (observasi – atribut – konteks). Metode triclustering mampu menemukan kelompok observasi dengan karakteristik yang mirip pada beberapa atribut dan konteks sekaligus. Analisis tricluster kerap diimplementasikan pada data ekspresi gen 3D (gen – kondisi – waktu). Pada penelitian ini dilakukan analisis tricluster dengan metode Hybrid Discrete Firefly Optimization (DFO) pada data ekspresi gen 3D. Metode ini merupakan kombinasi dari metode dan Discrete Firefly Optimization (DFO). Metode DFO merupakan metode optimasi yang terinspirasi dari perilaku firefly (kunang-kunang) yang selalu bergerak ke arah firefly lain dengan cahaya yang lebih terang. Metode DFO bertujuan untuk memperoleh tricluster terbaik dengan volume maksimum dari suatu populasi tricluster. Pada metode DFO, suatu tricluster dengan volume lebih kecil akan bergerak ke arah tricluster lain dengan volume lebih besar dengan bantuan crossover operator. Setiap iterasi pada metode DFO dilakukan sampai semua tricluster dibandingkan volumenya dengan satu sama lain sehingga tricluster dengan volume lebih kecil dapat diperbaiki posisinya dan meningkat volumenya. Kebaruan dari penelitian ini merupakan pembentukan populasi tricluster awal dilakukan dengan metode . Metode bertujuan untuk menghasilkan tricluster dengan Mean Squared Residue (MSR) minimum, yaitu di bawah threshold tertentu. Populasi tricluster dengan karakteristik demikian meringankan beban dan waktu komputasi pada metode DFO. Data yang digunakan pada analisis tricluster ini merupakan data ekspresi gen dari sel kanker payudara MCF-7 ketika disuntikkan 100 nM hormon estrogen untuk empat waktu berbeda, yaitu selama 0 jam, 3 jam, 6 jam, dan 12 jam. Masing-masing perlakuan direplikasi sebanyak tiga kali. Pada penelitian ini diperoleh bahwa simulasi yang menghasilkan tricluster akhir terbaik dengan TQI terkecil adalah simulasi dengan nilai sebesar 3E-05. Gen-gen yang termasuk ke dalam tricluster ini memiliki profil ekspresi yang mirip ketika disuntikkan 100nM estrogen untuk tiga replikasi dan empat waktu. Estrogen merupakan salah satu hormon yang mempengaruhi pertumbuhan kanker payudara. Oleh karena itu, kumpulan gen dari tricluster yang diperoleh dapat dijadikan acuan pada penelitian selanjutnya oleh ahli medis terkait pengaruh estrogen terhadap kanker payudara dan untuk menentukan target terapi gen kanker payudara.

Triclustering is a data mining technique that is used to group observations on three dimensional data which consists of observation, attribute, and context dimension. Triclustering is used to find a group of observations with high similarity on several attributes and several contexts. Triclustering analysis is often implemented on three dimensional gene expression dataset. The 3D gene expression dataset dimensions consist of gene, condition, and time. The triclustering method that is used on this research is the Hybrid Discrete Firefly Optimization (DFO). This method is a combination of and DFO. Discrete Firefly Optimization (DFO) is an optimization method that was inspired by firefly movement in the wild in which a less bright firefly always moves to the one with brighter light. In triclustering analysis, every tricluster is called a firefly. Every firefly has a fitness value which is measured by its volume and a position which is represented by a binary encoding of its elements. The DFO method is used to find the best tricluster with maximum volume from a population of triclusters. In the DFO method, a tricluster with smaller volume will move towards a tricluster with larger volume. The movement is done by updating the smaller volume tricluster position. The new position is obtained through crossover operator. Every iteration of DFO is completed once every tricluster fitness value is compared to each other. Repeating the DFO iteratively will give the end result of the best tricluster with maximum volume. The novelty of this research is the addition of method in constructing the initial tricluster population. The population created from will have MSR lower than the threshold so the computation time in the optimization step can be reduced. The Hybrid DFO method is implemented on a 3D gene expression dataset related to the MCF-7 breast cancer cell. The cell is injected with 100nM estrogen for four different times, i.e. 0, 3, 6, and 12 hours. Every experiment is repeated three times. This research finds that the simulation with the best tricluster based on the TQI score is the simulation with equals to 3E-05. The genes that are included in the tricluster are found to have exhibit similar expression when injected by 100nM for three conditions and four time periods. Estrogen is one of the hormones that can affect breast cancer growth. Therefore, the genes that are included in the tricluster can be used as a reference for medical researchers in future research related to estrogen-induced breast cancer and to assist the selection for genes target in breast cancer therapy."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amiruddin
"Persaingan dalam dunia bisnis khususnya perbankan yang semakin ketat membuat para pelakunya harus selalu memikirkan strategi-strategi terobosan yang dapat menjamin keberlangsungan bisnis mereka. Kepuasan pelanggan merupakan salah satu faktor yang sangat perlu diperhatikan untuk mengikat pelanggan agar tetap setia pada produk atau layanan yang ditawarkan. Salah satu aset utama yang dimiliki oleh perusahaan perbankan dewasa ini adalah data transaksi bisnis dalam jumlah yang sangat besar. Hal ini menciptakan sebuah kebutuhan akan adanya teknologi yang dapat memanfaatkannya untuk menggali pengetahuan-pengetahuan baru, yang dapat membantu dalam perencanaan strategi bisnis di masa depan. Dalam hal tersebut teknologi data mining hadir sebagai sebuah solusi yang dapat diterapkan.
Dalam tulisan ini akan dibahas implementasi data mining untuk menemukan model berupa association rules yang bisa diinterpretasikan menjadi pengetahuan baru mengenai karakteristik beberapa obyek layanan perbankan Bank XYZ. Pengetahuan baru tersebut nantinya bisa digunakan sebagai bahan analisis untuk menentukan rencana strategis ke depan khususnya dalam rangka meningkatkan kinerja layanan sehingga pelanggan tetap setia terhadap produk dan layanan Bank XYZ.

The tighter competition in banking industry motivates the actors to always think of new strategies to ensure their business sustainability. Customer satisfaction must be maintained to make customers remain loyal to the offered products or services. One of the main assets of banking organization or corporate is a large number of business transaction data. This creates a need of new technologies to mine new knowledges, which can assist management in making future business strategy plans. Data mining technology is one applicable solution.
This thesis describes the implementation of data mining in order to find association rules model which can be further interpreted as new knowledges on banking service characteristic of Bank XYZ. The new knowledges will be useful to determine strategic plans in the future, especially in increasing the performance of products or services. They finally can make the customers loyal to products or services of Bank XYZ.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2007
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ketut Gde Manik Karvana
"Banyak perusahaan yang telah menyadari bahwa mereka harus berusaha keras tidak hanya mendapatkan pelanggan baru, namun juga untuk mempertahankan pelanggan lama. Memprediksi nasabah yang akan pergi mulai dilakukan oleh perusahaan. Prediksi nasabah churn adalah kegiatan yang dilakukan untuk memprediksi nasabah tersebut akan meninggalkan perusahaan atau tidak.
Banyak cara yang dapat dilakukan untuk memprediksi nasabah churn. Salah satu cara memprediksi nasabah churn ini adalah dengan menggunakan teknik klasifikasi dari data mining yang menghasilkan sebuah model machine learning. Dengan mempelajari data nasabah seperti data demografi, data transaksi dan data kepemilikan produk maka, perusahaan akan bisa memprediksi nasabah yang akan churn, sehingga perusahaan dapat melakukan tindakan pencegahan agar nasabah tersebut tidak berhenti untuk menggunakan jasa dari perusahaan.
Penelitian ini membandingkan beberapa metode dari teknik klasifikasi data mining dan pengukuran dari sampel datanya. Dari penelitian ini didapat bahwa metode Support Vector Machine (SVM) dengan perbandingan sampling kelas data 50:50 merupakan metode terbaik untuk memprediksi nasabah churn di Bank XYZ. Hasil dari pemodelan ini bisa digunakan untuk mendapatkan informasi nasabah yang akan pergi meninggalkan perusahaan sehingga perusahaan dapat mengambil tindakan sebelum nasabah tersebut pergi.

Many companies have realized they must strive not only to get new customers but also to retain old customers. The company began to predict customers who would no longer use company services. Churn customer prediction is an activity carried out to predict whether the customer will leave the company or not.
There are many ways that can be done to predict churn customers, usually to predicting this customer churn by using a classification technique from data mining that produces a machine learning model. Studying customer historical data such as demographic data, transaction data and product ownership data, will be able to predict customers who will churn and can take preventive measures so these customers do not stop using services from the company.
This study compares several methods of data mining classification techniques and measurements from data samples. From this study it was found that the method of Support Vector Machine (SVM) with a comparison of 50:50 data class sampling is the best method for predicting churn customers at Bank XYZ. The results of this modeling can be used to obtain information on customers who will stop using  company services so the company can take action before the customer leaves.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Julius Dimas Trisaktyo Nugroho
"

Sistem e-procurement merupakan sistem pengadaan yang dilakukan dengan cara elektronik yang menjadi faktor kunci untuk mengelola keuangan negara dengan kontrol yang tepat, serta dilindungi oleh kebijakan dan peraturan perundang-undangan yang berlaku. Menurut Asian Development Bank e-tendering, yang merupakan bagian dari e-procurement, merupakan aplikasi strategis yang dapat menunjang kinerja pada sektor pemerintahan. Berdasarkan temuan praktik yang tidak sesuai dengan prinsip pengadaan, maka dalam penelitian ini dilakukan sebuah analisis mendalam untuk mengevaluasi kegiatan tender pada lembaga kementerian di Indonesia. Pada penelitian ini ditunjukkan bagaimana penambangan data dilakukan pada portal pengadaan nasional untuk menganalisis data tender dan mendapatkan temuan pola tersembunyi yang berguna untuk pengambilan keputusan. Penelitian ini menggunakan metodologi web data mining dengan melakukan pendekatan analisis secara deskriptif dan statistik. Dengan melakukan metode uji chi-square dan multivariance Anova, ditemukan adanya kaitan antara lembaga kementerian dengan pemenang berulang pada tahun anggaran 2018-2019. Di samping itu frekuensi partisipasi peserta tidak memiliki dampak terhadap statistik kemenangan berulang pada Kementerian Perhubungan, tetapi berdampak pada Kementerian PUPR. Penelitian ini juga menemukan adanya hubungan yang sangat kuat antara variabel Harga Perkiraan Sendiri (HPS) dengan nilai pagu. Selain itu pada penelitian ini juga ditemukan anomali data pada harga penawaran pemenang tender dengan nilai 100 kali lebih besar dari harga pagu dan HPS.

 


E-procurement is an electronic procurement system that became a key factor required to manage financial aspect of a country with appropriate controls, and protected by legal policies. According to Asian Development Bank, e-tendering as part of e-procurement, is classified as a strategic application that can enhance performance in the government sector. Based on the finding of practices that are not comply with the principles of good procurement governance, in this study an in-depth analysis was conducted to evaluate the tender activities of the ministry in Indonesia. This research shows how data mining is carried out at the national procurement portal to analyze tender data and findings the hidden pattern that would be useful for decision making. This study uses a web data mining methodology by conducting a descriptive and statistical analysis approach. By using the chi-square and multivariance Anova test method, this study has found that there was a relation between the ministries and repeated winners in year 2018-2019. In addition, the frequency of participation did not have an impact on the statistics of recurring wins at the Ministry of Transportation, but it had an impact on the Ministry of Public Works and Public Housing. This study also found a very strong relationship between the Owner Estimate (OE) value and the threshold value. In addition on this study, it was found anomaly data on the tender bid price of the winner with a value 100 times greater than the threshold value and OE value.

"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Rizka Nadia Fatma
"Dalam melaksanakan tugasnya sebagai penyelenggara pendidikan akademik, profesi, spesialis dan vokasi dalam sejumlah disiplin ilmu pengetahuan, teknologi, budaya, dan seni, Universitas Indonesia melakukan berbagai proses dan kegiatan akademik yang membutuhkan pengambilan keputusan. Saat ini proses analisa hanya dapat dilakukan berdasarkan data yang telah ada pada kurun waktu tertentu. Hal ini akan membatasi proses analisa tersebut. Dalam pengembangannya proses pengambilan keputusan akan lebih optimal jika didukung oleh sistem yang mampu menemukan pola atau hubungan dari kumpulan data yang ada. Kemudian dari pola atau hubungan yang didapatkan tersebut dilakukan prediksi untuk masa yang akan datang. Disinilah peran data mining diperlukan sebagai salah satu metode Knowledge Discovery in Databases (KDD), sehingga proses analisa untuk kegiatan akademik dapat lebih dioptimalkan. Permasalahan yang ada saat ini adalah tidak adanya data mining database dan aplikasi data mining yang mampu melakukan proses pencarian knowledge dalam basis data yang kemudian mampu mendukung proses analisa dan pengambilan keputusan untuk kegiatan akademik.
Tugas akhir dengan topik 'Perancangan Aplikasi Data Mining Untuk Kegiatan Akademik Di Universitas Indonesia' untuk ruang lingkup fakultas adalah salah satu solusi untuk mengatasi permasalahan di atas. Tugas akhir ini bertujuan untuk melakukan kajian analisa perancangan data mining database dan aplikasi data mining untuk kegiatan akademik di Universitas Indonesia.
Metodologi yang digunakan dalam tugas akhir ini dimulai dari pembelajaran terhadap teori-teori yang relevan dengan basis data, data warehouse, data mining, dan Knowledge Discovery in Databases (KDD). Kemudian dilanjutkan dengan melakukan kajian analisa terhadap permasalahan, analisa basis data untuk data mining, analisa data mining berupa kajian tahapan dan persiapan yang harus dilakukan, serta pemilihan studi kasus evaluasi keberhasilan studi mahasiswa. Setelah itu baru diambil kesimpulan yang sesuai dengan hasil analisa. Hasil yang diperoleh dari tugas akhir ini adalah bahwa penerapan konsep data mining pada ruang lingkup fakultas di Universitas Indonesia dapat membantu mengoptimalkan proses pengambilan keputusan untuk kegiatan akademik.
Hasil analisa yang dilakukan meliputi analisa permasalahan, analisa basis data untuk kebutuhan data mining, dan analisa data mining. Untuk mengembangkan aplikasi data mining dibutuhkan data warehouse atau basis data tersendiri yang memenuhi syarat dan mampu menyediakan data yang relevan dengan kebutuhan data mining. Hasil lain yang ditemukan adalah bahwa penggunaan aplikasi data mining untuk ruang lingkup akademik memerlukan aplikasi yang harus di-customized terlebih dahulu. Sedangkan hasil uji coba dengan menggunakan aplikasi statistik, yaitu SPSS menunjukkan bahwa algoritma regresi dapat digunakan untuk memprediksi IPK mahasiswa pada semester yang akan datang. Saran yang dapat diberikan untuk pengembangan selanjutnya adalah pengembangan analisa yang lebih spesifik yang diikuti dengan uji coba dengan menggunakan aplikasi data mining dan implementasi. Selain itu memperluas ruang lingkup proses analisa dan pengambilan keputusan yang tidak terbatas hanya pada evaluasi keberhasilan studi, namun dikaitkan dengan hal lain yang masih relevan seperti kaitan evaluasi keberhasilan studi dengan alokasi jadwal kuliah, dan sebagainya. Saran yang terakhir adalah mengembangkan data warehouse untuk ruang lingkup universitas, sehingga penerapan data mining tidak hanya terbatas pada kegiatan akademik."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2005
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nana Suryadigama
"Menghadapi persaingan antar bank yang sangat tinggi dan adanya keputusan pemerintah yang semakin ketat mengenai keberadaan bank khususnya bank berskala nasional saat ini, menuntut setiap bank mampu unggul dalam bersaing atau minimal mampu bertahan. Kegiatan penghimpunan dana pihak ketiga (funding) merupakan satu dari tiga kegiatan utama perbankan. Semakin besar dana yang dapat terhimpun menunjukkan baiknya kinerja bank tersebut.
Besaran hasil penghimpunan dana pihak ketiga ini menjadikan indikator tingkat kepercayaan masyarakat/nasabah terhadap bank. Menempatkan kepercayaan dan tingkat loyalitas nasabah sangat dibutuhkan oleh pihak bank. Teknologi On-Line Analytical Processing (OLAP) dan data mining diyakini mampu mencari pengetahuan untuk melakukan identifikasi tingkat loyalitas nasabah terhadap produk funding perbankan.
Berdasarkan hasil penelitian diperoleh pengetahuan bahwa produk funding tabungan x rupiah berpotensi cukup baik, dan nasabah yang memiliki tingkat loyalitas tinggi adalah nasabah yang mempunyai rata-rata saldo bulanan dengan membentuk pola yang tetap stabil dalam waktu tujuh sampai sepuluh bulan. Tersedianya kebutuhan informasi dan data ini, mendasari dalam mendukung sistem pengambil kebijakan baik penyusunan perencanaan dan keputusan strategi perbankan. Sehingga pihak bank mampu menentukan strategi perbankan khususnya funding dalam persaingan ketat yang dihadapi.

Facing a very high competition between banks and with the government tight regulations on national bank existences, it demands all the existing bank to be able to strive in the competition or in the minimum it has to be able to survive. One of the three main activities in banking includes funding. The more funds we could gather will also indicate a good performance of the bank.
The result from this funding will become the level indicator for customer towards the bank. The placement of customer trust and loyalty is greatly needed by the bank. On-Line Analytical Processing (OLAP) and data mining technology is believed to be able to identify the customer loyalty level towards the bank`s funding product.
Based on the research conducted, we had gather information that funding product for X rupiah savings has good potential, and the highest loyalty customers are those customers who have a stable monthly average balance in the period of 7 to 10 months. The availability of these data and information will become the foundation in supporting the system in making decision, with this; the bank will be able to choose a suitable banking strategy especially in funding."
Depok: Universitas Indonesia, 2008
T-Pdf
UI - Tesis Open  Universitas Indonesia Library
cover
Dedi Supriatna
"Divisi ABC PT XYZ sebagai organisasi managed care memiliki tujuan bisnis memperoleh selisih kapitasi atas pengendalian pelayanan kesehatan peserta managed care. Dalam proses bisnisnya, terdapat kendala dalam mengelola dan mengontrol biaya kesehatan untuk kasus-kasus penyakit katastropik, salah satunya penyakit gagal jantung.
Upaya pengendalian biaya kesehatan selama ini dilakukan melalui utilization review yang bersifat retrospektif. Pengendalian ini selain memiliki keunggulan, memiliki kelemahan, karena dilakukan setelah pelayanan diberikan. Tujuan dari penelitian ini adalah membuat model data mining yang akurat yang mampu mengenal pola terapi medis sebagai pertimbangan precertification yang merupakan prospective reviews. Model yang digunakan dalam kasus ini adalah dengan Naïve Bayes, SVM dan Decision Tree.
Berdasarkan pengujian yang dilakukan, diperoleh hasil bahwa model Naïve Bayes memiliki akurasi yang terbaik berdasarkan classification accuracy.

Division ABC PT XYZ as managed care organizations have the goal of obtaining a capitation difference for control participants managed care health services. In the business process, there are constraints in managing and controlling health care costs for catastrophic illness cases, one of which heart failure disease.
Efforts to control health care costs has been done through a retrospective utilization review. This control has an advantage in addition, has a weakness, because it is done after the service is provided. The purpose of this research is to create an accurate data mining models are able to recognize patterns of medical therapy as precertification consideration which is a prospective review. The model used in this case is the Naïve Bayes, SVM and Decision Tree.
Based on the tests performed, the results that Naïve Bayes models have the best accuracy of classification accuracy.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2014
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Fahrezal Zubedi
"Pada penelitian ini mengimplementasikan algoritma Similarity Based Biclustering dengan menggunakan PAM clustering pada tiga dataset ekspresi gen microarray. Penelitian ini bertujuan untuk mengetahui ekspresi regulasi dari masing-masing bicluster yang diperoleh dan mengetahui kinerja algoritma Similarity Based Biclustering-PAM clustering berdasarkan hasil analisis kelompok kondisi. Similarity based biclustering-PAM clustering secara teoritis terdiri dari empat tahap utama yaitu: mentransformasi data, membangun matriks similaritas, proses clustering khususnya dalam tesis ini menggunakan metode partisi PAM dan mengekstrak bicluster. Algoritma similarity based biclustering-PAM clustering dapat mengetahui ekspresi regulasi dari tiap bicluster pada tiga dataset yaitu: Diabetes Melitus tipe II, Diabetes Retinopati, dan Limfoma. Akurasi yang diperoleh dari algoritma Similarity Based Biclustering untuk masing-masing dataset yaitu Diabetes Melitus tipe II sebesar 0.55, Diabetes Retinopati sebesar 0.80 dan Limfoma sebesar 0.83.

In this research implements Similarity Based Biclustering algorithm by using PAM Clustering method in three dataset of microarray gene expression. Aim of this research is to know the regulated expression of each obtained bicluster and to know the performance of Similarity Based Biclustering PAM Clustering algorithm based on the result of group condition analysis. Similarity Based Biclustering is theoretically composed of four main stages transforming data, constructing matrix similarity, clustering process, especially in this thesis using PAM partition algorithm and extracting bicluster. Similarity Based Biclustering PAM is able to know the regulatory expression of each bicluster in three datasets Diabetes Mellitus type 2, Diabetes Retinopathy, and Lymphoma. Accuracy obtained from Similarity Based Biclustering algorithm for each dataset is 0.55 in data of type 2 diabetes mellitus, 0.80 in diabetic retinopathy data and 0.83 in lymphoma data.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49505
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>