Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 158158 dokumen yang sesuai dengan query
cover
Ahmad Yani
"Saat ini prospek geotermal Lahendong dioperasikan 80 MW terdiri dari Unit-1, 2, 3 dan 4 masing-masing 20 MW. Dengan management reservoir yang baik dan step wise development LHD-A adalah sumur eksplorasi yang ditargetkan ke sesar Lengkoan di dekat gunung Lengkoan, sebagaimana rekomendasi dari model konseptual awal dalam penyusunan well tergetting. Tujuan utama pengeboran sumur LHD-A adalah sebagai sumur deliniasi untuk konfirmasi batas reservoir di sebelah SW tepat di bawah gunung Lengkoan dan sebagai sumur make-up untuk buffer ketersediaan uap. Hasil pengeboran didapatkan bahwa LHD-A merupakan sumur Cyclic, low pressure dan tidak dapat masuk kesistem penyaluran uap dalam mensuplai kecukupan uap. Dilakukan update model konseptual dengan Analisa terintegrasi semua data yang ada dengan runutan kaidah kajian eksplorasi dan eksploitasi lapangan geotermal propek Lahendong. Update model konseptual dilakukan sebagai acuan dalam rencana pengelolaan dan pengembangan lapangan kedepan. Dalam studi juga dilakukan evaluasi permasalahan sumur LHD-A, direkomendasikan untuk dilakukan acidizing guna memperbaiki kondisi cyclic dan meningkatkan produktifitas sumur. Dilakukan juga kajian dan perhitungan pemanfaatan sumur low pressure LHD-A ini untuk pembangkitan small scale power plan dengan kapasitas 1 – 5 MW menggunakan berbagai scenario hasil perbaikan acidizing dan penentuan jenis teknologi power plan yang tepat untuk digunakan. Dengan dimanfaatkan secara baik sumur LHD-A maka akan meningkatkan keekonomian proyek terutama mengurangi dampak kerugian biaya pengeboran. Small scale Power plan juga dapat direkomendasikan untuk dikembangkan pada blok Utara prospek Lahendong dimana reservoir memiliki karakter low pressure. Usulan pengeboran di sebelah Timur prospek gunung Kasuratan dapat dilakukan setelah dilakukan kajian yang konfrehensif terkait dampak penyerapan yang cukup besar di daerah tersebut.

Currently, the Lahendong Geothermal Prospect is operating at 80 MW consisting of Units 1, 2, 3 and 4 each of 20 MW. With good reservoir management and step wise development LHD-A is an exploratory well targeted at the Lengkoan fault near Mount Lengkoan, as recommended by the initial conceptual model in preparing the well targeting. The main purpose of drilling the LHD-A well is as a delineation well to confirm the reservoir boundary in SW below Mount Lengkoan and as a make-up well to buffer steam availability. The drilling results show that LHD-A is a Cyclic well, low pressure and cannot enter the existing steam gathering system in supplying sufficient steam. Updating the conceptual model with an integrated analysis of all existing data with the sequence of study principles of Exploration and Exploitation of the Lahendong proyek geothermal field. Conceptual model updates are carried out as a reference in future field management and development plans. The study also evaluated the problem of the LHD-A well, it was recommended that it be acidized to improve cyclic conditions and increase well productivity. A study and calculation of the utilization of the LHD-A low pressure well was also carried out for generating a small-scale power plan with a capacity of 1 – 5 MW with various scenarios resulting from acidizing improvements and determining the right type of power plan technology to be used. By properly utilizing the LHD-A well, it will increase the economics of the proyek, especially reducing the impact of losses on drilling costs. A small-scale power plan can also be recommended for development in the North block of the Lahendong prospect where the reservoir has a low-pressure character. Proposals for drilling to the east of the G. Kasuratan prospect can be carried out after a comprehensive study has been carried out regarding the relatively large absorption impact in the area.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dizanissa Purnama Sari
"Lapangan geotermal X merupakan salah satu lapangan di Flores, Nusa Tenggara Timur yang memiliki potensi geotermal dan masih dalam tahap pengembangan. Pada Tahap eksplorasi, diperlukan pemahaman yang sangat baik terhadap sistem geotermal yang dapat digambarkan melalui model konseptua. Penelitian ini bertujuan untuk membangun sebuah model konseptual yang terintegrasi data geofisika, geologi, geokimia, dan data sumur. Hal ini digunakan untuk meminimalisir kegagalan dalam pemboran. Model konseptual merupakan informasi awal untuk menentukan lokasi pengeboran. Pemodelan dilakukan dengan menggunakan analisis inversi 3D magnetotellurik (MT) dan 2D gravitasi yang dikorelasikan dengan data sumur. Hasil geotermometer menunjukan temperatur reservoir berkisar 225-250ºC. Berdasarkan korelasi data tersebut dapat dilihat bahwa lapisan dibawah permukaan X dibagi menjadi 3 yaitu argilik, transisi, dan propilitik. Zona argilik diidentifikasikan sebagai clay cap dengan resistivitas ≤ 10 ohm-m dengan temperature 200ºC. Sedangkan zona transisi merupakan batas dari reservoir dan clay cap yang memiliki suhu sebesar 200-210ºC dan resistivitas 10-20 ohm-m. Zona propilitik merupakan zona reservoir yang kaya mineral illit dengan resistivitas 20-100 ohm-m dan temperature ≥ 210ºC. Luas area prospek lapangan geotermal X sebesar 3.4 km2 dengan potensi tertinggi di bagian utara daerah penelitian. Rekomendasi pengembangan yaitu 3 sumur produksi ke arah utara dan 2 sumur injeksi ke arah selatan. Disimpulkan bahwa model konseptual yang dihasilkan berkorelasi dengan baik dengan data sumur.

The X Geothermal field is one of the fields in Flores, East Nusa Tenggara that has geothermal potential and is still under development. At the exploration stage, understanding the geothermal system is important can be described through a conceptual model. This study aims to build an integrated conceptual model with geophysical, geological, geochemical, and well data. It is used to minimize failures in drilling. This is used to minimize failure in drilling. The geothermal conceptual model is the initial information for determining the drilling location. Modeling was carried out using inverse 3D magnetotelluric (MT) and 2D gravity analysis which was correlated with well data. The results of the geothermometer show that the reservoir temperature ranges from 225-250ºC. Based on the data correlation, it can be seen that the subsurface layer X is divided into 3 namely argillic, transitional, and propylitic. The argillic zone is identified as a clay cap with a resistivity of ≤ 10 ohm-m at a temperature of 200ºC. While the transition zone is the boundary of the reservoir and clay cap which has a temperature of 200-210ºC and a resistivity of 10-20 ohm-m. The prophylactic zone is a reservoir zone rich in illite minerals with a resistivity of 20-100 ohm-m and a temperature of ≥ 210ºC. The prospect area for the X geotermal field is 3.4 km2 with the highest potential in the northern part of the study area. Development recommendations are 3 production wells to the north and 2 injection wells to the south. It was concluded that the resulting conceptual model correlated well with the well data."
Jakarta: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Triwening Larasati
"Pemanfaatan potensi panas bumi di Gunung Galunggung yang merupakan salah satu gunungapi aktif di Indonesia belum dilakukan hingga saat ini. Studi mengenai sistem panas bumi daerah terkait belum banyak dilakukan. Studi pada penelitian ini dilakukan untuk memperjelas pendefinisian sistem pada model konseptual sebelumnya. Studi dilakukan untuk mengetahui keadaan sistem panas bumi daerah penelitian menggunakan data utama geologi dan geokimia. Metode yang digunakan antara lain metode penginderaan jauh, pemetaan geologi lapangan, petrografi, serta analisis geokimia dan isotop air yang diintegrasi dengan data gaya berat dan magnetotelluric literatur. Hasil studi menunjukkan keberadaan sumber panas yang berkaitan dengan vulkanisme aktif Gunung Galunggung. Batuan penudung terduga berada di utara hingga selatan daerah penelitian dengan reservoir yang terbentang di bawahnya. Pendugaan suhu reservoir memiliki kisaran antara 143-152°C menggunakan geotermometer Na-K-Ca. Fluida berasal dari air meteorik dan reservoir yang sama. Fluida panas bumi akan masuk melaui daerah imbuhan di utara, lalu terpanaskan oleh sumber panas, mengalir ke atas sehingga air kondensat termanifestasi, dan mengalir ke selatan hingga air klorida terencerkan termanifestasi. Permeabilitas dikontrol oleh struktur depresi di utara dan sesar normal dari komplek deformasi kuat di selatan. Sistem panas bumi daerah penelitian dikategorikan menjadi dinamis konvektif high-enthalphy liquid-dominated high-relief yang berasosiasi dengan vulkanisme Kuarter Gunung Galunggung.

The utilization of geothermal potential on Mount Galunggung, one of the active volcanoes in Indonesia, has not been carried out yet. There have not been many studies on the geothermal system in the related areas. The study in this research was conducted to further clarify the how the system works in the previous conceptual model. The study was conducted to determine the state of the geothermal system in the research area mainly using the geological and geochemical data. The methods used include remote sensing methods, field geological mapping, petrography, and geochemical and water isotope analysis integrated with gravity and magnetotelluric literature data. The results of the study indicate the presence of a heat source related to the active volcanism of Mount Galunggung. The expected cap rocks are in the north to south of the study area with the reservoir extending beneath it. The reservoir temperature estimation has a range between 143-152°C using Na-K-Ca geothermometer. The fluids originated from meteoric water and the same reservoir. Geothermal fluid will enter through the recharge area in the north, heated by a heat source, flow upwards so the steam-condensate water is manifested, and flows south until dilute chloride water is manifested. Permeability is controlled by the depression structure in the north and the normal fault of the strong deformation complex in the south. The geothermal system in the study area is categorized as a high-enthalphy liquid-dominated high-relief convective dynamic associated with the Galunggung Quaternary volcanism."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Salusu, Bianca Marella Putri
"Energi panas bumi di Indonesia memegang peranan yang sangat penting dalam energi terbarukan untuk memastikan terdapat sumber energi yang dapat diandalkan dan berkelanjutan. Berdasarkan PP No. 79 Tahun 2014 pada sektor energi, Indonesia menargetkan Energy Mix pada tahun 2025 dimana energi baru dan terbarukan berkontribusi sebesar 23% dari total Energy Mix. Melalui Perpres No. 22 Tahun 2017, Pemerintah Indonesia (RI) telah menetapkan target 7.241,5 MW panas bumi kapasitas terpasang pada tahun 2025. Sedangkan kapasitas terpasang saat ini sekitar 2.133,5 MW. Berdasarkan kesenjangan antara potensi dan kapasitas terpasang PLTP dengan data tersebut dapat disimpulkan bahwa pengembangan panas bumi di Indonesia masih rendah karena banyaknya tantangan yang dihadapi. Salah satu tantangan dalam pengembangan panas bumi adalah isu sosial seperti penolakan dari komunitas cukup banyak mendominasi. Isu sosial dapat mengakibatkan keterlambatan penyelesaian proyek yang akhirnya akan berdampak pada keekonomian proyek. Risiko sosial ini pun dapat diturunkan dengan meningkatkan penerimaan sosial (social acceptance) atas kegiatan panas bumi dengan memahami latar belakang dan faktor yang mempengaruhi rendahnya penerimaan sosial. Social acceptance dapat dibagi menjadi 3 dimensi yaitu: socio- political acceptance, community acceptance, dan market acceptance. Penelitian ini akan berfokus pada socio-political acceptance sebagai dimensi yang paling luas dari social acceptance yang menjelaskan bagaimana manusia dan organisasi membuat keputusan, menyelesaikan konflik, menjalin kemitraan, merespon kebijakan pemerintah serta masalah sosial dan sebagai pondasi dari social acceptance. Strategi yang dihasilkan dari analisis terhadap socio-political acceptance ini diharapkan dapat membantu perusahaan penghasil listrik dari panas bumi (IPP) untuk meningkatkan socio-political acceptance terhadap proyek panas bumi untuk meningkatkan kinerja waktu.

Geothermal energy in Indonesia plays a very important role in renewable energy to ensure that there is a reliable and sustainable energy source. Based on PP No. 79 In 2014 in the energy sector, Indonesia targets the Energy Mix in 2025 where new and renewable energy contributes 23% of the total Energy Mix. Through Presidential Decree No. 22 of 2017, the Government of Indonesia (RI) has set a target of 7,241.5 MW of geothermal installed capacity by 2025. While the current installed capacity is around 2,133.5 MW. Based on the gap between the potential and installed capacity of geothermal power plants with these data, it can be concluded that geothermal development in Indonesia is still low due to the many challenges faced. One of the challenges in geothermal development is that social issues such as refusal from the community dominate quite a lot. Social issues can result in delays in project completion which will ultimately have an impact on the project's economy. This social risk can also be reduced by increasing social acceptance of geothermal activities by understanding the background and factors that influence the low social acceptance. Social acceptance can be divided into 3 dimensions, namely: socio-political acceptance, community acceptance, and market acceptance. This study will focus on socio-political acceptance as the broadest dimension of social acceptance which explains how humans and organizations make decisions, resolve conflicts, establish partnerships, respond to government policies and social problems and as the foundation of social acceptance. The strategy resulting from the analysis of socio-political acceptance is expected to help companies producing electricity from geothermal (IPP) to increase socio-political acceptance of geothermal projects to improve time performance."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Yuasti Hasna Fauziyah
"ABSTRAK
Lapangan panas bumi Mataloko secara administratif terletak di Desa Todabelu, Kabupaten Golewa, Ngada, Nusa Tenggara Timur (NTT) dalam jarak 10 km ke timur-tenggara Bajawa, ibukota Ngada. Reservoir dangkal yang terletak di alterasi batuan diidentifikasi sebagai zona lempung. Pembentukan zona reservoir di zona lempung disebabkan oleh sesar normal Wae Luja yang melewati daerah ini, di mana sesar ini menyebabkan pembentukan fraktur di zona ini dan sebagai saluran masuknya cairan dari reservoir ke reservoir dangkal. model konseptual dimulai dengan menafsirkan data geosains (geologi, geokimia, geofisika). Langkah pertama adalah pemrosesan ulang data Magnetotelluric (MT) sebagai data utama. Kemudian diintegrasikan dengan hasil analisis data geologi, geokimia, geofisika untuk menghasilkan model konseptual. Model konseptual ini akan menjadi data input pada pemodelan numerik. Tahap kedua yaitu melakukan simulasi reservoir yaitu mengubah model konseptual menjadi model numerik. Pemodelan dilakukan dengan secara forward dengan software TOUGH2. Penelitian ini berhasil membuat model natural state lapangan Mataloko. Ketercapaian kondisi natural state ditunjukkan dengan adanya kesesuaian antara profil temperatur sumur dengan hasil pemodelan. Model natural state lapangan Mataloko agar dapat membantu untuk melakukan skenario pengembangan lapangan diantaranya perhitungan potensi, penentuan lokasi sumur produksi dan sumur injeksi, serta pemantauan kondisi reservoir selama masa eksploitasi.

ABSTRACT
Mataloko is geographically located in Golewa Subdistrict, Ngada Regency, East Nusa Tenggara Province, Indonesia The formation of the reservoir zones in claycap zone is caused by normal faults Wae Luja that pass through this area, where this fault which causes the formation of fractures in this zone and as a channel entry of fluid from the reservoir into the shallow reservoir. Geoscientific surveys covering thermal manifestations area have been conducted followed by exploration drillings. However, delineation of high temperature up-flow zone associated with heat source is still challenging, even drilling data from 2 wells could not answer the question yet. Development of conceptual model is started by interpreting geosciences data (geology, geochemistry, geophysics). The first step is reprocessing of Magnetotelluric (MT) data as the main data. It is then integrated with the analysis results of geology, geochemistry, geophysics data to generate a conceptual model. The TOUGH2 simulation uses the conceptual model in point 2 as input data, producing natural conditions that are calibrated with well data/compatibility curves (temperature data as a function of depth). Simulation results on well data show compatibility. This gives a strong indication that the center of the upflow is vertically below MT-3 and MT-4 and the outflow is in the northwest of the Mataloko Geothermal prospect area."
2019
T55287
UI - Tesis Membership  Universitas Indonesia Library
cover
Noval Suryadi
"

Dalam rangka upaya memenuhi target  bauran energi baru terbarukan terkait kapasitas terpasang Pembangkit Listrik Panas Bumi (PLTP) pada tahun 2025 sebesar 7.200 MW, dengan potensi sumber daya panas bumi sebesar 23.060 MW baru sebesar 2.360 MW yang dimanfaatkan menjadi Pembangkit Listrik Tenaga Panas Bumi (PLTP). Pada Wilayah Kerja Panas Bumi “XYZ” terdapat potensi cadangan panas bumi 464 MW, namun baru dimanfaatkan menjadi Pembangkit Listrik Panas Bumi sebesar 55 MW (12%). Untuk meningkatkan kapasitas pembangkit pada Wilayah Kerja Panas Bumi “XYZ” yang telah beroperasi dapat menurunkan tingkat risiko sumber daya panas bumi, menekan biaya investasi awal dan mengurangi waktu pembangunan pembangkit karena proses pengembangan panas bumi tidak dimulai dari tahap awal. Tujuan penelitian ini adalah untuk mengevaluasi dan menganalisis  dalam investasi pengembangan kapasitas pembangkit listrik panas bumi menggunakan Simulasi Monte Carlo dalam pengambilan keputusan, dengan memperhitungkan variabel-variabel ketidakpastian seperti faktor kapasitas, tingkat suku bunga, inflasi, pajak, proporsi pembiayaan ekuitas, dan jangka waktu pembangunan. Hasil analisis  menunjukkan bahwa skema investasi pengembangan kapasitas pembangkit dengan cara memaksimalkan cadangan panas bumi menghasilkan  peningkatan probabilitas Net Present Value bernilai positive.


In order to meet the renewable energy mix target related to the installed capacity of Geothermal Power Plants (PLTP) in 2025 of 7,200 MW, with the potential of geothermal resources of 23,060 MW, only 2,360 MW has been utilised as a Geothermal Power Plant. In the Geothermal Working Area "XYZ" there are potential geothermal reserves of 464 MW, but only 55 MW (12%) has been utilised as a Geothermal Power Plant. To increase the generating capacity in the "XYZ" Geothermal Working Area that has been operating can reduce the risk level of geothermal resources, reduce initial investment costs and reduce plant construction time because the geothermal development process does not start from the initial stage. The purpose of this study is to evaluate and analyse the investment in geothermal power plant capacity development using Monte Carlo Simulation in decision making, by taking into account uncertain variables such as capacity factor, interest rate, inflation, tax, proportion of equity financing, and construction period. The results of the analysis show that the investment scheme for developing generating capacity by maximising geothermal reserves results in an increase in the probability of a positive Net Present Value.

"
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dimas Ahmad Syafii
"Keberadaan sistem panas bumi dapat diperkirakan dengan melihat manifestasi yang muncul di permukaan tanah akibat adanya struktur geologi, seperti sesar/patahan pada daerah potensi panas bumi. Untuk mengetahui keberadaan struktur patahan di lapangan ?DAS? digunakan metode gravitasi. Dalam metode gravitasi terdapat metode lanjutan untuk mengidentifikasi patahan, yaitu FHD (First Horizontal Derivative) dan SVD (Second Vertical Derivative). Metode tersebut memanfaatkan turunan dari nilai anomali gravitasi. Output dari metode tersebut adalah peta kontur yang menunjukkan keberadaan suatu patahan.
Terdapat delapan patahan yang teridentifikasi oleh metode FHD dan SVD, tujuh patahan merupakan patahan normal dan satu patahan merupakan petahan naik. Hasil tersebut diintegrasikan dengan data pendukung, seperti data MT, geologi, geokimia, data sumur dan model sintetik. Dari data-data tersebut dapat dibuat model densitas dan model konseptual sistem panas bumi daerah ?DAS?. Model densitas menunjukkan densitas clay cap sebesar 2,25 gr/cm3, densitas reservoir sebesar 2,41 gr/cm3, dan densitas heat source sebesar 2,81 gr/cm3. Berdasarkan model konseptual, fumarol dan mata air panas SPG merupakan zona upflow, sedangkan mata air panas BB 1 dan BB 2 merupakan zona outflow.

The existence of geothermal system can be assessed by identifying distribution of manifestations that appears on the surface. The manifestations appear because of geology structure, like fault structure on geothermal potention area. Gravity method is used to knowing the exsistence of fault structure on ?DAS field. In gravity method, there are the advanced methods to identify fault. They are FHD (First Horizontal Derivative) and SVD (Second Vertical Derivative). Those methods use derivative of gravity anomaly value. The output of FHD and SVD is contour map that indicates the exsistence of fault.
There are eight faults identified by FHD and SVD, they are seven normal faults and a reverse fault. The FHD and SVD contour map will be integrated with other support data, such as resistivity section of MT, geology data, geochemistry data, thermal gradient data, and sintetic model. Those data result density model and conseptual model of ?DAS? field geothermal system. Density model show the density of clay cap is 2,25 gr/cm3, reservoir is 2,41 gr/cm3, and heat source is 2,81 gr/cm3. Base on conseptual model, fumarole and hot spring SPG are upflow zone, while hot springs BB 1 and BB 2 are outflow zone.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S63686
UI - Skripsi Membership  Universitas Indonesia Library
cover
London: Earthscan, 2003
621.44 GEO
Buku Teks  Universitas Indonesia Library
cover
Ahmad Rayan Putra Yasa
"Tahun 2018, U.S Departemen Energi (DOE) memilih lokasi bagian northeast dari Milford, yang sedang mengembangkan metode EGS adalah Utah Frontier Observatory for Research Geothermal Energy (FORGE). Utah FORGE merupakan zona aliran panas tinggi yang masih bagian dari margin tenggara Cekungan Great. Diketahui terdapat dua struktur utama yang mengkontrol lokasi ini, yaitu patahan Negro Mag dengan orientasi E-W, Patahan Opal Mound (OMF) yang berorientasi NE-SW, dan sistem patahan MM yang berorientasi N-S. OMF memanjang sejauh ~5 Km berarah NE-SW, bercabang di bagian paling utara. Kunci untuk EGS merupakan rasio dari temperatur ke laju suatu aliran (atau produksi dan tingkatan injeksi) harus memberikan hasil pada kondisi ekonomi. Walaupun ekonomi dapat berubah seiring berjalannya waktu, namun temperatur dan ekonomik harus berhubungan untuk definisi sistem geothermal yang moderen. Pada penelitian ini data yang digunakan berupa termal data dan data mentah MT di daerah Utah FORGE, Milford. Data digunakan merupakan data primer bersifat open source yang berlokasi di Utah FORGE. Didapatkan pada penelitian ini sebagai berikut dengan nilai resistivitas tinggi serta peningkatan nilai resistivitas terhadap kedalaman bisa mengartikan bahwa terdapatnya heat source. Sedangkan resistivitas kecil dapat menampakan suatu clay cap dan juga reservoir. Pada kedalaman 1000 m dikatakan bahwa batuan tersebut tergolong sebagai batuan granitik dengan gamma ray yang nilainya lebih tinggi dari 150 dengan kisaran nilai densitas sebesar 2.65. Pada prediksi temperatur dengan kedalaman tersebut didapat pada well 56-32 107ºC, pada well 58-32 memiliki suhu sebesar 102ºC, dan pada well 78-32 101ºC. Pada kedalaman 3000 m merupakan granitik dengan nilai gamma ray lebih tinggi dari 150 dan kisaran nilai densitas 2.7 - 3.0. Prediksi temperatur pada kedalaman tesebut didapatkan pada well 56-32 246ºC, pada well 58-32 memiliki sebesar 253ºC, dan pada well 78-32 225ºC.

In 2018, the U.S. Department of Energy (DOE) chose the location of the northeast part of Milford, which is developing the EGS method is the Utah Frontier Observatory for Research Geothermal Energy (FORGE). In maximizing its potential, further studies need to be carried out, not only on the surface, but below the surface. Utah FORGE is a high heat flow zone that is still part of the southeastern margin of the Great Basin. It is known that there are two main structures that control this location, namely the Negro Mag fault with an E-W orientation, the NE-SW oriented Opal Mound Fault (OMF), and the MM fault system oriented N-S. The OMF extends for ~5 Km in the NE-SW direction, branching off at the northernmost part. The key to EGS is that the ratio of temperature to flow rate (or production and injection rate) should yield results under economic conditions. Although economics can change over time, temperature and economics must relate to the modern definition of geothermal systems. In this study, the data used were thermal data and raw MT data in the Utah FORGE area, Milford. The data used is open source primary data located in Utah FORGE. Obtained in this study as follows with a high resistivity value and an increase in resistivity value to depth can mean that there is a heat source. While small resistivity can show a clay cap and also a reservoir. At a depth of 1000 m it is said that the rock is classified as a granitic rock with gamma ray values higher than 150 with a density value range of 2.65. In the temperature prediction with this depth obtained at well 56-32 107ºC, at well 58-32 has 102ºC, and at well 78-32 101ºC. At a depth of 3000 m it is granitic with gamma ray values higher than 150 and a density value range of 2.7- 3.0. Temperature predictions at this depth are obtained at well 56-32 246ºC, at well 58-32 has 253ºC, and at well 78-32 225ºC."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Penelitian ditujukan untuk mendapatkan model geofisika prospek
geothermal Metta. Pelaksanaan penelitian dimulai pada pertengahan bulan
Januari – April 2007 di kantor Pertamina Geothermal Energy (PGE) dengan
memodelkan penampang inversi dua dimensi magnetotellurik (MT) dan
pengolahan data pendukung. Interpretasi dan penggambaran model geofisika
dilaksanakan di kampus Universitas Indonesia (UI) hingga awal Juni 2007.
Ketiga penampang pemodelan MT menunjukkan keberadaan sistem
geothermal dilihat dari kontras nilai resistivitas batuan. Hasil ketiga model
menunjukkan lokasi up flow, yaitu berada di bawah titik pengukuran MT 15 –
MT 16 pada model satu, MT 21 pada model dua, dan MT 27 pada
penampang tiga. Luas areanya adalah ± 20 km2. Lokasi out flow menuju
sebelah NW dari seluruh titik MT. Prospek Geothermal Metta perlu
pembuktian dengan melakukan pemboran hingga kedalaman 2,5 km tepat
diatas lokasi up flow untuk mendapatkan temperatu reservoir sebesar 350°C."
Universitas Indonesia, 2007
S28891
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>