Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 142886 dokumen yang sesuai dengan query
cover
Evelline Kristiani
"Bervariasinya kapasitas, potensi dan tingkat perkembangan daerah menyebabkan perbedaan mutu yang lebar antar program studi maupun institusi perguruan tinggi di penjuru Indonesia. Perbedaan mutu ini menjadi fokus para pemangku kepentingan perguruan tinggi, khususnya calon mahasiswa, pemerintah dan pasar tenaga kerja. Agar dapat menjaga mutunya, Universitas Kristen Krida Wacana (UKRIDA) sebagai salah satu dari institusi perguruan tinggi di Indonesia wajib memenuhi standar dari kriteria yang ditetapkan oleh Badan Akreditasi Nasional Perguruan Tinggi (BAN-PT). Kemudian, untuk dapat bersaing, UKRIDA juga perlu menetapkan keputusan-keputusan maupun rencana strategis yang dibuat memanfaatkan data yang sama dengan yang digunakan untuk pengukuran pemenuhan standar kriteria akreditasi agar selaras dengan tujuan utama peningkatan mutu. Namun, ternyata melalui analisis akar-akar masalah Loshin yang diantaranya manusia, proses, teknologi dan kebijakan ditemukan kualitas data dari salah satu kewajiban Tri Dharma yaitu pendidikan dan pengajaran secara khusus pada data mahasiswa dan akademik, masih buruk baik itu manajemen maupun kondisi dari data itu sendiri. Berdasarkan hal tersebut, penelitian ini bertujuan untuk menyusun strategi peningkatan kualitas data mahasiswa dan akademik UKRIDA. Menggunakan metode kualitatif, pengumpulan data dilakukan melalui wawancara, query langsung dan studi dokumen. Penilaian terhadap kualitas data saat ini menggunakan dimensi kualitas data dari Loshin dan PermenristekDikti RI Nomor 61 Tahun 2016 Pasal 12, penilaian terhadap tingkat kematangan manajemen kualitas data menggunakan Data Quality Maturity Model Loshin. Penilaian menghasilkan temuan penyebab permasalahan dan temuan kesenjangan manajemen. Analisis kemudian digunakan untuk menghasilkan rekomendasi strategi, yang pertama lewat pemetaan penyebab permasalahan umum DMBOK2 dibentuk strategi peningkatan kondisi kualitas data dan yang kedua, lewat pemetaan best practive aktivitas manajemen kualitas data DMBOK2 yang dipadu dengan poin-poin konsiderasi strategi kualitas data Loshin dibentuk strategi peningkatan manajemen kualitas data. Secara garis besar strategi yang diajukan menyarankan perbaikan struktur data dan antarmuka aplikasi, pendefinisian tata kelola data, penyelenggaraan dokumentasi aturan, SOP dan SLA yang lengkap hingga ke unit bisnis dan peningkatan pengukuran dan pelaporan.

Variations in capacity, potential, and level of regional development cause wide differences in quality between study programs and higher education institutions throughout Indonesia. These quality differences become the focus of higher education stakeholders, especially prospective students, the government, and the labor market. To maintain its quality, Krida Wacana Christian University (UKRIDA) as one of the higher education institutions in Indonesia must meet the standards of criterias set by the National Accreditation Body for Higher Education (BAN-PT). Then, to be able to compete, UKRIDA also needs to establish strategic decisions and plans that are made based on the same data used to measure accreditation criteria standards fulfillment so that they are aligned with the main objective of quality improvement. However, through analysis of Loshin’s domain of problem root causes include humans, processes, technology, and policies, turns out that the quality of data from one of the obligations of the Tri Dharma, namely education and teaching specifically on student and academic data is still poor both in terms of management and the condition of the data itself. Based on these founds, this study aims to develop strategies for improving the UKRIDA student and academic data quality. Using qualitative methods, data collection was carried out through interviews, direct queries and document study. Assessment of the current data quality uses data quality dimensions from Loshin and PermenristekDikti RI Number 61 of 2016 Article 12, assessment of the maturity level of data quality management using Loshin's Data Quality Maturity Model. The assessment results in: findings of problems causes and findings of management gaps. Further analysis was carried out to produce strategic recommendations, firstly through mapping DMBOK2 common problems causes; a strategy for improving data quality conditions was formed. Secondly, through mapping of DMBOK2 best practice data quality management activities combined with Loshin’s data quality strategy points of consideration, a data quality management improvement strategy was formed. Broadly speaking, the proposed strategy suggests corrections of data structures and application interfaces, defining data governance, organizing complete documentation of rules, SOPs, and SLAs up to business units also measurement and reporting improvement."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Evelline Kristiani
"Bervariasinya kapasitas, potensi dan tingkat perkembangan daerah menyebabkan perbedaan mutu yang lebar antar program studi maupun institusi perguruan tinggi di penjuru Indonesia. Perbedaan mutu ini menjadi fokus para pemangku kepentingan perguruan tinggi, khususnya calon mahasiswa, pemerintah dan pasar tenaga kerja. Agar dapat menjaga mutunya, Universitas Kristen Krida Wacana (UKRIDA) sebagai salah satu dari institusi perguruan tinggi di Indonesia wajib memenuhi standar dari kriteria yang ditetapkan oleh Badan Akreditasi Nasional Perguruan Tinggi (BAN-PT). Kemudian, untuk dapat bersaing, UKRIDA juga perlu menetapkan keputusan-keputusan maupun rencana strategis yang dibuat memanfaatkan data yang sama dengan yang digunakan untuk pengukuran pemenuhan standar kriteria akreditasi agar selaras dengan tujuan utama peningkatan mutu. Namun, ternyata  melalui analisis akar-akar masalah Loshin yang diantaranya manusia, proses, teknologi dan kebijakan ditemukan kualitas data dari salah satu kewajiban Tri Dharma yaitu pendidikan dan pengajaran secara khusus pada data mahasiswa dan akademik, masih buruk baik itu manajemen maupun kondisi dari data itu sendiri. Berdasarkan hal tersebut, penelitian ini bertujuan untuk menyusun strategi peningkatan kualitas data mahasiswa dan akademik UKRIDA. Menggunakan metode kualitatif, pengumpulan data dilakukan melalui wawancara, query langsung dan studi dokumen. Penilaian terhadap kualitas data saat ini menggunakan dimensi kualitas data dari Loshin dan PermenristekDikti RI Nomor 61 Tahun 2016 Pasal 12, penilaian terhadap tingkat kematangan manajemen kualitas data menggunakan Data Quality Maturity Model Loshin. Penilaian menghasilkan temuan penyebab permasalahan dan temuan kesenjangan manajemen. Analisis kemudian digunakan untuk menghasilkan rekomendasi strategi, yang pertama lewat pemetaan penyebab permasalahan umum DMBOK2 dibentuk strategi peningkatan kondisi kualitas data dan yang kedua, lewat pemetaan best practive aktivitas manajemen kualitas data DMBOK2 yang dipadu dengan poin-poin konsiderasi strategi kualitas data Loshin dibentuk strategi peningkatan manajemen kualitas data. Secara garis besar strategi yang diajukan menyarankan perbaikan struktur data dan antarmuka aplikasi, pendefinisian tata kelola data, penyelenggaraan dokumentasi aturan, SOP dan SLA yang lengkap hingga ke unit bisnis dan peningkatan pengukuran dan pelaporan.

Variations in capacity, potential, and level of regional development cause wide differences in quality between study programs and higher education institutions throughout Indonesia. These quality differences become the focus of higher education stakeholders, especially prospective students, the government, and the labor market. To maintain its quality, Krida Wacana Christian University (UKRIDA) as one of the higher education institutions in Indonesia must meet the standards of criterias set by the National Accreditation Body for Higher Education (BAN-PT). Then, to be able to compete, UKRIDA also needs to establish strategic decisions and plans that are made based on the same data used to measure accreditation criteria standards fulfillment so that they are aligned with the main objective of quality improvement. However, through analysis of Loshin’s domain of problem root causes include humans, processes, technology, and policies, turns out that the quality of data from one of the obligations of the Tri Dharma, namely education and teaching specifically on student and academic data is still poor both in terms of management and the condition of the data itself. Based on these founds, this study aims to develop strategies for improving the UKRIDA student and academic data quality.

Using qualitative methods, data collection was carried out through interviews, direct queries and document study. Assessment of the current data quality uses data quality dimensions from Loshin and PermenristekDikti RI Number 61 of 2016 Article 12, assessment of the maturity level of data quality management using Loshin's Data Quality Maturity Model. The assessment results in: findings of problems causes and findings of management gaps. Further analysis was carried out to produce strategic recommendations, firstly through mapping DMBOK2 common problems causes; a strategy for improving data quality conditions was formed. Secondly, through mapping of DMBOK2 best practice data quality management activities combined with Loshin’s data quality strategy points of consideration, a data quality management improvement strategy was formed. Broadly speaking, the proposed strategy suggests corrections of data structures and application interfaces, defining data governance, organizing complete documentation of rules, SOPs, and SLAs up to business units also measurement and reporting improvement."

Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Tubagus Ahmad Marzuqi
"Universitas Kristen Krida Wacana (UKRIDA) adalah salah satu perguruan tinggi swasta di Indonesia. UKRIDA secara periodik mengikuti proses akreditasi dan klaster universitas. Salah satu poin penilaian adalah kelulusan tepat waktu. Sayangnya, potensi terjadinya mahasiswa terlambat lulus atau drop out masih menjadi tantangan bagi organisasi. Untuk dapat melakukan tindakan mitigasi dan menyusun strategi retensi, perlu dilakukan prediksi terhadap mahasiswa yang berpeluang drop out (DO) dan terlambat lulus menggunakan data informasi dasar akademik. Hal tersebut dilakukan untuk membantu proses pengecekan mahasiswa DO yang sebelumnya masih manual. Selain itu, faktor informasi dasar akademik apa saja yang memengaruhi hasil prediksinya. Model yang dibangun menggunakan algoritma-algoritma yang diantaranya Logistic Regression, Naïve Bayes, Support Vector Machine (SVM), Decision Tree, Random Forest, dan Gradient Boosting. Kontribusi praktis pada penelitian ini adalah UKRIDA dapat menggunakan hasil penelitian ini untuk diimplementasikan pada sistem sehingga dapat memudahkan Koordinator Pangkalan Data UKRIDA dalam melakukan pengecekan secara otomatis. Kontribusi Teoritis pada penelitian ini, diharapkan dapat memberikan rekomendasi untuk akademis dalam membangun aspek teoritis terkait deteksi mahasiswa DO dan terlambat lulus. Hasilnya data yang digunakan untuk mendeteksi mahasiswa DO berhasil mencapai 99,42% pada metric precision dan 98,58% pada average precision. Data yang digunakan untuk mendeteksi mahasiswa terlambat lulus berhasil mencapai 78,51% pada metric precision dan AUC 82,86%. Faktor-faktor yang memengaruhi mahasiswa DO adalah status bayar karena terdapat mahasiswa yang hutang terprediksi DO, IPK dengan rata-rata dibawah 2 diprediksi DO, jumlah ulang mata kuliah di atas 1, tidak KRS di atas 2. Namun pada deteksi mahasiswa terlambat lulus, faktor-faktor yang memengaruhi hal tersebut adalah terdapat data yang lebih dari 1 Tidak KRS dan 24 kali mengulang mata kuliah serta dengan status bayar Hutang.

Krida Wacana Christian University (UKRIDA) is one of the private universities in Indonesia. UKRIDA periodically follows the accreditation process and university clusters. One of the points of assessment is graduation on time. Unfortunately, the potential for students to graduate late or drop out is still a challenge for organizations. To be able to take mitigation actions and develop retention strategies, it is necessary to predict students who are likely to drop out (DO) and graduate late using basic academic information data. This was done to help the process of checking DO students which was previously still manual. In addition, what are the basic academic information factors that affect the prediction results. The model is built using algorithms including Logistic Regression, Naïve Bayes, Support Vector Machine (SVM), Decision Tree, Random Forest, and Gradient Boosting. A practical contribution to this research is that UKRIDA can use the results of this research to be implemented in the system so that it can make it easier for the UKRIDA Database Coordinator to check automatically. Theoretical contributions to this research are expected to provide recommendations for academics in developing theoretical aspects related to the detection of dropped out students and late graduation. As a result, the data used to detect DO students managed to reach 99.42% on metric precision and 98.58% on average precision. The data used to detect late graduating students managed to reach 78.51% on metric precision and 82.86% AUC. The factors that affect dropout students are paid status because there are students whose debt is predicted to drop out, GPA with an average of below 2 is predicted to drop out, the number of repeat courses is above 1, not KRS is above 2. What affects this is that there are data that are more than 1 No KRS and repeat courses 24 times as well as with Debt payment status."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Tubagus Ahmad Marzuqi
"Salah satu poin penilaian akreditasi universitas adalah jumlah mahasiswa yang lulus tepat waktu dan mahasiswa yang drop-out (DO). Sayangnya, potensi terjadinya mahasiswa terlambat lulus atau drop out masih menjadi tantangan bagi Universitas Kristern Krida Wacana (UKRIDA). Untuk dapat melakukan tindakan mitigasi dan menyusun strategi retensi, perlu dilakukan prediksi terhadap mahasiswa yang berpeluang DO dan terlambat lulus menggunakan data informasi akademik. Hal tersebut dilakukan untuk membantu proses pengecekan mahasiswa DO yang sebelumnya masih manual. Selain itu, faktor informasi akademik apa saja yang memengaruhi hasil prediksinya. Model yang dibangun menggunakan algoritma-algoritma yang diantaranya Logistic Regression, Nave Bayes, Support Vector Machine (SVM), Decision Tree, Random Forest, dan Gradient Boosting. Hasilnya data yang digunakan untuk mendeteksi mahasiswa DO berhasil mencapai 99,42% pada metric precision dan 98,58% pada average precision. Data yang digunakan untuk mendeteksi mahasiswa terlambat lulus berhasil mencapai 78,51% pada metric precision dan AUC 82,86%. Faktor-faktor yang memengaruhi mahasiswa DO adalah status bayar karena terdapat mahasiswa yang hutang terprediksi DO, IPK dengan rata-rata dibawah 2 diprediksi DO, jumlah ulang mata kuliah di atas 1, tidak KRS di atas 2. Namun pada deteksi mahasiswa terlambat lulus, faktor-faktor yang memengaruhi hal tersebut adalah terdapat data yang lebih dari 1 Tidak KRS dan 24 kali mengulang mata kuliah serta dengan status bayar Hutang.

One of the points of university accreditation assessment is the number of students who graduate on time and drop-out students (DO). Unfortunately, the potential for students to graduate late or drop out is still a challenge for Kristern Krida Wacana University (UKRIDA). To be able to take mitigation actions and develop retention strategies, it is necessary to predict students who are likely to drop out and graduate late using academic information data. This was done to help the process of checking DO students which was previously still manual. In addition, what academic information factors affect the prediction results. The model is built using algorithms including Logistic Regression, Naïve Bayes, Support Vector Machine (SVM), Decision Tree, Random Forest, and Gradient Boosting. As a result, the data used to detect DO students managed to reach 99.42% on metric precision and 98.58% on average precision. The data used to detect late graduating students managed to reach 78.51% on metric precision and 82.86% AUC. The factors that affect dropout students are paid status because there are students whose debt is predicted to drop out, GPA with an average of below 2 is predicted to drop out, the number of repeat courses is above 1, not KRS is above 2. -Factors that influence this are data that is more than 1 No KRS and repeats courses 24 times as well as with Debt payment status."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Evin Helfianna
Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2008
T25641
UI - Tesis Open  Universitas Indonesia Library
cover
Nila Prawitasari Kristyaningrum
"ABSTRAK
Perkembangan teknologi informasi semakin pesat dapat mengubah proses bisnis suatu organisasi. Begitu pula di bidang pendidikan, keberadaan teknologi informasi seperti e-learning dapat mengubah bentuk pembelajaran. Sejak tahun 2009, UKSW melalui Biro Teknologi dan Sistem Informasi (BTSI) telah memanfaatkan e-learning. Harapan UKSW dengan adanya F-learn adalah seluruh dosen dan mahasiswa memanfaatkan F-learn secara maksimal. Pada kenyataannya, penggunaan F-learn masih rendah. Berdasarkan data activity logs tahun 2011-2012, hanya 7% dari total dosen yang menggunakan F-learn, dan 2% mahasiswa yang telah menggunakan F-learn. Hal ini memicu rasa ingin tahu mengenai faktor-faktor apa saja yang mempengaruhi tingkat penerimaan dosen dan mahasiswa dalam menggunakan F-learn.
Kerangka pemikiran yang dirancang pada penelitian ini mengadopsi model Academic Discipline based Unified Theory of Acceptance dan Use of Technology (AUTAUT) dengan mengurangi variabel moderator Voluntariness of Use dan Age. Metode pengumpulan data yang digunakan pada penelitian ini adalah kuesioner dengan menggunakan skala likert. Jumlah responden yang didapat adalah 141 responden, tetapi setelah melalui saringan kelayakan menjadi 127 responden.Kemudian untuk pengolahan data menggunakan Structural Equation Modeling (SEM) dengan bantuan software LISREL 8.80 untuk menguji hipotesis-hipotesis yang diajukan. Pengujian hipotesis dilakukan pada model umum, kemudian dilakukan pengujian terhadap setiap moderator, dalam hal ini disiplin akademik, jenis kelamin dan pengalaman.
Hasil penelitian ini adalah faktor-faktor yang mempengaruhi dosen dan mahasiswa UKSW terhadap penggunaan F-learn. Faktor-faktor yang ditemukan mempengaruhi dosen dan mahasiswa UKSW pada model penerimaan umum dan model ilmu humaniora dalam menggunakan F-learn adalah performance expectancy dan effort expectancy. Sedangkan faktor-faktor yang mempengaruhi dosen dan mahasiswa UKSW pada model ilmu terapan, model laki-laki, model perempuan dan model pengalaman adalah effort expectancy.

ABSTRACT
The development of IT is changing rapidly on the business processes of an organization. So the presence of IT such as e-learning can change the form of learning. Since 2009, SWCU through Biro Teknologi dan Sistem Informasi (BTSI) has been utilizing e-learning. Expectation of SWCU with F-learn is the lecturer and students could utilize F-learn the most. In fact, the use of F-learn is still low. Based on data activity logs in 2011-2012, only 7% of lecturers and 2% of students had used F-learn. This triggers curiosity about factors affecting level of acceptance on lecturer and students in using F-learn.
Theoretical framework designed on this research adopted from a model of Academic Discipline based Unified Theory of Acceptance and Use of Technology (AUTAUT) by reducing moderator variables, which are Voluntariness of Use and Age. Data collection methods used in this research are questionnaires which using likert scale. The number of respondents obtained is 141 respondents, but after through sieve process only remains to 127 respondents. Then to process data this research by using Structural Equation Modeling (SEM) with the help of LISREL 8.80 to test hypotheses posed. The testing of hypotheses is done in general model, then tested towards any moderators, in this research composed of academic discipline, gender and experience.
This research result is factors affecting lecturers and students of SWCUthat use F-learn. Factors affecting lecturers and students of SWCU on general model acceptance and studies on humanities’ model in using F-learn are performance expectancy and expectancy effort. While factors affecting lecturers and students of SWCUon the applied science’s model, men’s model, women’s model and experience’s model is effort expectancy."
Fakultas Ilmu Komputer Universitas Indonesia, 2013
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Probo Herawani
"ABSTRAK
Menurut Undang-undang No. 12 tahun 2012 tentang Pendidikan Tinggi Pasal 56, Pangkalan Data Pendidikan Tinggi (PD Dikti) merupakan kumpulan data penyelenggaraan pendidikan tinggi seluruh perguruan tinggi yang terintegrasi secara nasional. PD Dikti berperan penting dalam sistem penjaminan mutu pendidikan tinggi, yaitu berfungsi sebagai sumber informasi bagi lembaga akreditasi untuk melakukan akreditasi program studi dan perguruan tinggi; bagi pemerintah untuk melakukan pengaturan, perencanaan, pengawasan, pemantauan dan evaluasi serta pembinaan dan koordinasi program studi dan perguruan tinggi; dan bagi masyarakat untuk mengetahui kinerja program studi dan perguruan tinggi.
Mengingat pentingnya PD Dikti tersebut, tersedianya data yang berkualitas pada PD Dikti menjadi salah satu target yang ingin dicapai Pusat Data dan Informasi Iptek Dikti, Kementerian Riset, Teknologi, dan Pendidikan Tinggi. Target pengelolaan PD Dikti tahun 2016 akan fokus pada kualitas data, yaitu bagaimana dapat menyediakan data yang berkualitas. Untuk itu, perlu adanya strategi untuk menjamin dan meningkatkan kualitas data pada PD Dikti.
Berdasarkan hal tersebut, penelitian ini menyusun strategi untuk meningkatkan kualitas data pada PD Dikti. Untuk menyusun strategi tersebut dilakukan penilaian manajemen kualitas data saat ini, yaitu melalui penilaian terhadap dimensi kualitas data dan penilaian terhadap maturitas manajemen kualitas data. Langkah- langkah penelitian yang dilakukan meliputi identifikasi masalah, penilaian manajemen kualitas data, analisis kesenjangan untuk hasil penilaian maturitas manajemen kualitas data, analisis akar masalah untuk hasil penilaian dimensi kualitas data, dan menyusun strategi peningkatan kualitas data.
Hasil penelitian ini adalah rekomendasi strategi peningkatan kualitas data pada PD Dikti. Strategi tersebut meliputi peningkatan proses pada 7 (tujuh) domain manajemen kualitas data, yaitu pendefinisian harapan/kebutuhan kualitas data, pengukuran dimensi kualitas data, penetapan kebijakan informasi, peningkatan tata kelola data, penetapan prosedur, perbaikan teknologi, dan pengelolaan kinerja. Rekomendasi tersebut diharapkan dapat digunakan sebagai acuan dalam melakukan program kualitas data pada PD Dikti.

ABSTRACT
According to Law No. 12 of 2012 about Higher Education clause 56, Higher Education Database is a collection of higher education management data from all Indonesian universities that is integrated nationally. Higher Education Database plays an important role in the Quality Assurance System of Higher Education, which serves as a source of information for accrediting agencies to carry out accreditation of study programs; for the government to make arrangements, planning, supervision, monitoring and evaluation; and for the public to know the performance of the study program and universities. Clause 52 of the same Law also noted that the Higher Education Quality Assurance System is based on Higher Education Database.
Because of the importance of the Higher Education Database, availability of high quality data became one of the targets to be achieved by the Data and Information Center. One of the targets for the implementation of the Higher Education Database in 2016 is to focus on the quality of the data.
Therefore, it need strategies to ensure and improve the quality of data on Higher Education Database. Based on the above, this study recommends strategies for improving the quality of the data on Higher Education Database. To develop the strategy, the author assessed the current data quality management. Assessment of the current data quality management was done through an assessment of the dimensions of data quality and assessment of the maturity of data quality management. Research steps undertaken included problem identification, assessment of data quality management, gap analysis for maturity assessment of data quality management, root cause analysis for assessment of data quality dimensions, and formulation of strategy for improving data quality.
Results of this research include recommendation of data quality improvement strategy in Higher Education Database. The strategy includes improvement management in seven (7) data quality management domain, comprising of defining the expectations of dataquality, measurement of data quality dimension, establishment of information policy, improving data governance, establishment of procedures, technological improvements, and performance management. The recommendations are expected to be used as a reference in the data quality program on Higher Education Database.
"
2016
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Eka Ayu Puspitaningrum
"ABSTRAK
Permasalahan berdasarkan temuan Badan Pemeriksa Keuangan (BPK) atas pemeriksaan kinerja pelayanan perizinan di Kementerian Komunikasi dan Informatika (KOMINFO) adalah data sertifikasi alat dan perangkat telekomunikasi pada database sistem informasi e-sertifikasi belum sepenuhnya lengkap, akurat, dan valid dalam mendukung pelayanan sertifikasi alat dan perangkat telekomunikasi. Dengan ketidaklengkapan tersebut memberi risiko terjadinya penerimaan yang tidak sah dan tidak valid atas perolehan biaya sertifikasi. Sehingga belum dapat dimanfaatkan secara optimal untuk keperluan pelaporan ataupun rekonsiliasi data. Berdasarkan kondisi tersebut dilakukan pengukuran tingkat kematangan manajemen kualitas data. Narasumber dalam penelitian ini adalah pejabat di Direktorat Standardisasi Perangkat Pos dan Informatika (PPI) yang menangani proses sertifikasi alat dan perangkat telekomunikasi, pejabat di Direktorat Pengendalian Sumber Daya dan Perangkat Pos dan Informatika (SDPPI) yang mengelola database dan sistem informasi e-sertifikasi, serta staf programmer e-sertifikasi. Pengukuran tingkat kematangan manajemen kualitas data dilakukan dengan menggunakan framework Modelo Alarcos de Mejora de Datos (MAMD) 2.0 dimana hasilnya berada pada level 1, sedangkan level yang diharapkan adalah level 2. Untuk itu strategi peningkatan kualitas data sertifikasi alat dan perangkat telekomunikasi disusun berdasarkan analisis penyebab permasalahan data, kesenjangan dari kondisi manajemen kualitas data saat ini dan harapan, pedoman sekretaris jenderal kementerian kominfo nomor 1 tahun 2018 serta Peraturan Menteri Komunikasi Dan Informatika Nomor: 41/PER/MEN.KOMINFO/11/2007 tentang Panduan Umum Tata Kelola Teknologi Informasi Dan Komunikasi Nasional. Rekomendasi yang dihasilkan dikelompokkan dalam delapan poin disiplin data yang perlu dilaksanakan Direktorat Standardisasi PPI apabila ingin mencapai tingkat kematangan manajemen kualitas data yang diinginkan. Delapan poin disiplin data tersebut diantaranya adalah manajemen persyaratan data, manajemen infrastruktur teknologi, manajemen konfigurasi, manajemen data historis, manajemen keamanan data, kontrol dan pemantauan kualitas data, manajemen siklus hidup data, serta definisi standar, kebijakan dan prosedur.

ABSTRACT
The problem based on the findings of the Supreme Audit Agency (BPK) on licensing performance checks at the Ministry of Communication and Information Technology (KOMINFO) is that the certification data of telecommunication tools and equipment in the e-certification information system database is incomplete, accurate and valid in supporting equipment and equipment certification services telecommunication. With incompleteness submitted, the approval of acceptance is invalid and invalid on the approval of the certification fee. Data that cannot be utilized optimally for the purpose of reconciliation reporting. Based on these conditions, the level of maturity of data quality management is measured. The speakers in this study were officials at the Directorate of Standardization (PPI) who requested the process of certification of telecommunications equipment and equipment, officials in the Directorate of Resources and Equipment of Post and Informatics Control who manage e-certification database and information systems, and e-certification programmer staff. The measurement of the level of maturity of data quality management is carried out using the Modelo Alarcos de Mejora de Datos (MAMD) 2.0 framework where the results depend on level 1, while the expected level is level 2. For this reason, strategies to improve the quality of certification data for the tools and devices used for needs analysis The problem of data, discusses current data management problems and expectations, guidelines for the secretary general of the Ministry of Communication and Information Number 1 of 2018 as well as Minister of Communication and Information Technology Regulation Number 41 / PER / MEN.KOMINFO / 11/2007 concerning General Guidelines for Technology Governance National Information and Communication. The recommendations produced are grouped in several data discipline points that need to be implemented by the Directorate of Standardization PPI agreeing to reach the desired level of data quality management maturity. These eight data discipline points are approved are data requirements management, technology infrastructure management, configuration management, historical data management, data security management, data quality control and control, data lifecycle management, as well as standard resolutions, policies and procedures."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Eka Ayu Puspitaningrum
"ABSTRAK
Permasalahan berdasarkan temuan Badan Pemeriksa Keuangan (BPK) atas pemeriksaan kinerja pelayanan perizinan di Kementerian Komunikasi dan Informatika (KOMINFO) adalah data sertifikasi alat dan perangkat telekomunikasi pada database sistem informasi e-sertifikasi belum sepenuhnya lengkap, akurat, dan valid dalam mendukung pelayanan sertifikasi alat dan perangkat telekomunikasi. Dengan ketidaklengkapan tersebut memberi risiko terjadinya penerimaan yang tidak sah dan tidak valid atas perolehan biaya sertifikasi. Sehingga belum dapat dimanfaatkan secara optimal untuk keperluan pelaporan ataupun rekonsiliasi data. Berdasarkan kondisi tersebut dilakukan pengukuran tingkat kematangan manajemen kualitas data. Narasumber dalam penelitian ini adalah pejabat di Direktorat Standardisasi Perangkat Pos dan Informatika (PPI) yang menangani proses sertifikasi alat dan perangkat telekomunikasi, pejabat di Direktorat Pengendalian Sumber Daya dan Perangkat Pos dan Informatika (SDPPI) yang mengelola database dan sistem informasi e-sertifikasi, serta staf programmer e-sertifikasi. Pengukuran tingkat kematangan manajemen kualitas data dilakukan dengan menggunakan framework Modelo Alarcos de Mejora de Datos (MAMD) 2.0 dimana hasilnya berada pada level 1, sedangkan level yang diharapkan adalah level 2. Untuk itu strategi peningkatan kualitas data sertifikasi alat dan perangkat telekomunikasi disusun berdasarkan analisis penyebab permasalahan data, kesenjangan dari kondisi manajemen kualitas data saat ini dan harapan, pedoman sekretaris jenderal kementerian kominfo nomor 1 tahun 2018 serta Peraturan Menteri Komunikasi Dan Informatika Nomor: 41/PER/MEN.KOMINFO/11/2007 tentang Panduan Umum Tata Kelola Teknologi Informasi Dan Komunikasi Nasional. Rekomendasi yang dihasilkan dikelompokkan dalam delapan poin disiplin data yang perlu dilaksanakan Direktorat Standardisasi PPI apabila ingin mencapai tingkat kematangan manajemen kualitas data yang diinginkan. Delapan poin disiplin data tersebut diantaranya adalah manajemen persyaratan data, manajemen infrastruktur teknologi, manajemen konfigurasi, manajemen data historis, manajemen keamanan data, kontrol dan pemantauan kualitas data, manajemen siklus hidup data, serta definisi standar, kebijakan dan prosedur.

ABSTRACT
The problem based on the findings of the Supreme Audit Agency (BPK) on licensing performance checks at the Ministry of Communication and Information Technology (KOMINFO) is that the certification data of telecommunication tools and equipment in the e-certification information system database is incomplete, accurate and valid in supporting equipment and equipment certification services telecommunication. With incompleteness submitted, the approval of acceptance is invalid and invalid on the approval of the certification fee. Data that cannot be utilized optimally for the purpose of reconciliation reporting. Based on these conditions, the level of maturity of data quality management is measured. The speakers in this study were officials at the Directorate of Standardization (PPI) who requested the process of certification of telecommunications equipment and equipment, officials in the Directorate of Resources and Equipment of Post and Informatics Control who manage e-certification database and information systems, and e-certification programmer staff. The measurement of the level of maturity of data quality management is carried out using the Modelo Alarcos de Mejora de Datos (MAMD) 2.0 framework where the results depend on level 1, while the expected level is level 2. For this reason, strategies to improve the quality of certification data for the tools and devices used for needs analysis The problem of data, discusses current data management problems and expectations, guidelines for the secretary general of the Ministry of Communication and Information Number 1 of 2018 as well as Minister of Communication and Information Technology Regulation Number 41/PER/MEN.KOMINFO/11/2007 concerning General Guidelines for Technology Governance National Information and Communication. The recommendations produced are grouped in several data discipline points that need to be implemented by the Directorate of Standardization PPI agreeing to reach the desired level of data quality management maturity. These eight data discipline points are approved are data requirements management, technology infrastructure management, configuration management, historical data management, data security management, data quality control and control, data lifecycle management, as well as standard resolutions, policies and procedures.
"
2019
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ira Sulistyowati
"Dalam rangka mendukung pengambilan keputusan yang tepat bagi pimpinan berbasis data (data driven organization), Kemenkeu menyusun inisiatif strategis optimalisasi Sistem Layanan Data Kementerian Keuangan (SLDK) dan pengembangan proyek data analytics. Dalam pengembangan data analytics, terdapat permasalahan rendahnya kualitas data sehingga data driven organization belum terwujud dengan optimal. Penelitian ini meggunakan metode kualitatif dengan melalui proses wawancara dan observasi. Pengukuran kualitas data dan tingkat kematangan kualitas data menggunakan kerangka kerja Loshin’s Data Quality, DAMA-Data Management Book of Knowledge (DMBoK), dan Government Data Qualiaty (GDQ). Hasil pengukuran kualitas data menunjukkan terdapat permasalahan data tidak akurat dan tidak lengkap dan tingkat kematangan kualitas data Kemenkeu berada pada level Repeatable. Menyusun strategi kualitas data, ketentuan teknis, tim kualitas data, dan prosedur pengelolaan kualitas data; identifikasi harapan dan aturan kualitas data; mengukur, memantau, dan melaporkan kualitas data; mengelola aturan, knowledge base, dan metadata; meningkatkan kesadaran; melakukan pelatihan; menyediakan tools, menerapkan aturan dan menangani permasalahan; memutakhirkan SLA; mengelola kinerja kualitas data; dan melakukan audit kualitas data merupakan strategi peningkatan kualitas data yang dilaksanakan dalam empat tahap pada Tahun 2022-2023.

To support the right decision making for data-driven organizations, the Ministry of Finance (MoF) has developed a strategic initiative for optimizing the MoF's Data Service System (SLDK) and developing a data analytics project. In the development of data analysis, there is a problem of low data quality so that data-driven organizations have not been realized optimally. This study uses a qualitative method through interview and observation. Measurement of data quality and maturity level of data quality uses the Loshin's Data Quality framework, DAMA-Data Management Book of Knowledge (DMBoK), and Government Data Quality (GDQ). The results of the measurement of data quality indicate that there are problems with inaccurate and incomplete data and the MoF's data quality level is at the Repeatable level. Develop a data quality strategy, technical provisions, data quality team, and data quality management procedures; identification of data quality expectations and rules; measure, monitor, and report on data quality; manage rules, knowledge base, and metadata; raise awareness; conduct training; provide tools, apply rules and carry out problem solving; updating SLAs; manage data quality performance; and conducting data quality audits is a data quality improvement strategy implemented in four stages in 2022-2023.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>