Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 166477 dokumen yang sesuai dengan query
cover
Salusu, Bianca Marella Putri
"Energi panas bumi di Indonesia memegang peranan yang sangat penting dalam energi terbarukan untuk memastikan terdapat sumber energi yang dapat diandalkan dan berkelanjutan. Berdasarkan PP No. 79 Tahun 2014 pada sektor energi, Indonesia menargetkan Energy Mix pada tahun 2025 dimana energi baru dan terbarukan berkontribusi sebesar 23% dari total Energy Mix. Melalui Perpres No. 22 Tahun 2017, Pemerintah Indonesia (RI) telah menetapkan target 7.241,5 MW panas bumi kapasitas terpasang pada tahun 2025. Sedangkan kapasitas terpasang saat ini sekitar 2.133,5 MW. Berdasarkan kesenjangan antara potensi dan kapasitas terpasang PLTP dengan data tersebut dapat disimpulkan bahwa pengembangan panas bumi di Indonesia masih rendah karena banyaknya tantangan yang dihadapi. Salah satu tantangan dalam pengembangan panas bumi adalah isu sosial seperti penolakan dari komunitas cukup banyak mendominasi. Isu sosial dapat mengakibatkan keterlambatan penyelesaian proyek yang akhirnya akan berdampak pada keekonomian proyek. Risiko sosial ini pun dapat diturunkan dengan meningkatkan penerimaan sosial (social acceptance) atas kegiatan panas bumi dengan memahami latar belakang dan faktor yang mempengaruhi rendahnya penerimaan sosial. Social acceptance dapat dibagi menjadi 3 dimensi yaitu: socio- political acceptance, community acceptance, dan market acceptance. Penelitian ini akan berfokus pada socio-political acceptance sebagai dimensi yang paling luas dari social acceptance yang menjelaskan bagaimana manusia dan organisasi membuat keputusan, menyelesaikan konflik, menjalin kemitraan, merespon kebijakan pemerintah serta masalah sosial dan sebagai pondasi dari social acceptance. Strategi yang dihasilkan dari analisis terhadap socio-political acceptance ini diharapkan dapat membantu perusahaan penghasil listrik dari panas bumi (IPP) untuk meningkatkan socio-political acceptance terhadap proyek panas bumi untuk meningkatkan kinerja waktu.

Geothermal energy in Indonesia plays a very important role in renewable energy to ensure that there is a reliable and sustainable energy source. Based on PP No. 79 In 2014 in the energy sector, Indonesia targets the Energy Mix in 2025 where new and renewable energy contributes 23% of the total Energy Mix. Through Presidential Decree No. 22 of 2017, the Government of Indonesia (RI) has set a target of 7,241.5 MW of geothermal installed capacity by 2025. While the current installed capacity is around 2,133.5 MW. Based on the gap between the potential and installed capacity of geothermal power plants with these data, it can be concluded that geothermal development in Indonesia is still low due to the many challenges faced. One of the challenges in geothermal development is that social issues such as refusal from the community dominate quite a lot. Social issues can result in delays in project completion which will ultimately have an impact on the project's economy. This social risk can also be reduced by increasing social acceptance of geothermal activities by understanding the background and factors that influence the low social acceptance. Social acceptance can be divided into 3 dimensions, namely: socio-political acceptance, community acceptance, and market acceptance. This study will focus on socio-political acceptance as the broadest dimension of social acceptance which explains how humans and organizations make decisions, resolve conflicts, establish partnerships, respond to government policies and social problems and as the foundation of social acceptance. The strategy resulting from the analysis of socio-political acceptance is expected to help companies producing electricity from geothermal (IPP) to increase socio-political acceptance of geothermal projects to improve time performance."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dandi Baskoro Soebakir
"Keberadaan struktur geologi merupakan salah satu parameter penting dalam menentukan zona permeabel pada suatu sistem geotermal. Penelitian ini dilakukan di salah satu area prospek geotermal di zona Sistem Sesar Sumatera (GSF) yang termasuk dalam segmen Angkola dan Barumun yang bertujuan untuk mengidentifikasi kemenerusan fitur permukaan hingga bawah permukaan terutama struktur geologi yang berkaitan erat dengan zona permeabel dengan mengintegrasikan data geologi, geokimia, dan geofisika. Teknologi remote sensing digunakan untuk mengidentifikasi struktur geologi yang terobservasi di permukaan yang dikorelasikan dengan persebaran manifestasi permukaan. Namun, tidak semua struktur geologi yang terobservasi di permukaan dapat diamati dan kemenerusannya dari permukaan hingga bawah permukaan dilakukan dengan pendekatan geofisika menggunakan data magnetotelurik (MT) dan gravitasi. Interpretasi struktur geologi permukaan berdasarkan analisis remote sensing dan persebaran manifestasi permukaan memiliki korelasi yang positif dengan hasil gravitasi adanya struktur graben dari zona GSF yang memiliki orientasi baratlaut-tenggara. Kelurusan dan karakteristik (arah dan kemiringan) struktur ditandai dengan adanya kontras nilai gravitasi, nilai Horizontal Gradient Magnitude (HGM) maksimum, dan nilai zero Second Vertical Derivative (SVD) serta analisis Multi Scale-Second Vertical Derivative (MS-SVD). Hasil interpretasi struktur bawah permukaan gravitasi berkorelasi positif dengan analisis parameter MT (splitting curve MT) yang dapat mengindikasi zona struktur bawah permukaan. Gabungan interpretasi struktur permukaan dan bawah permukaan teridentifikasi adanya 5 struktur (F1, F2, F3, F4, dan F5) yang diklasifikasikan sebagai Struktur Pasti (F1, F2, F3, dan F4) dan Struktur Diperkirakan (F5) yang memiliki orientasi baratlaut-tenggara. Struktur F3 yang berorientasi baratlaut-tenggara merupakan struktur utama yang berperan sebagai fluid conduit (zona permeabel) yang dibuktikan dengan adanya manifestasi mata airpanas bertipe klorida. Berdasarkan hasil pemodelan inversi 3-D MT dan pemodelan kedepan 2-D gravitasi dapat mendelineasi zona reservoir pada kedalaman 1500 – 2000-meter yang dikontrol oleh struktur F3 dan zona reservoir berasosiasi dengan batuan metasediment yang nantinya dapat menentukan lokasi sumur pengeboran. Untuk memvisualisasikan sistem geotermal secara komprehensif, maka dikembangkan model konseptual dengan mengintegrasikan model geofisika yang memiliki kualitas data optimum dengan data geologi dan geokimia yang saling berkorelasi, sehingga dapat dijadikan dasar dan acuan dalam menentukan lokasi pengembangan sumur produksi dan reinjeksi dan menurunkan resiko kegagalan dalam well targeting.

The existence of geological structures is one of the important parameters in determining the permeability zone in a geothermal system. This study was conducted in one of the geothermal prospect areas in the Sumatera Fault System (GSF) zone included in the Angkola and Barumun segments which aims to identify the continuity of surface to subsurface features, especially geological structures that are closely related to permeability zones by integrating geological, geochemical, and geophysical data. Remote sensing technology is used to identify geological structures observed at the surface that are correlated with the distribution of surface manifestations. However, not all surface-observed geological structures can be observed and their continuity from the surface to the subsurface is done with a geophysical approach using magnetotelluric (MT) and gravity data. Interpretation of surface geological structures based on remote sensing analysis and the distribution of surface manifestations has a positive correlation with the gravity results of the graben structure of the GSF zone which has a northwest-southeast orientation. The alignment and characteristics (direction and slope) of the structure are characterized by the contrast of gravity values, maximum Horizontal Gradient Magnitude (HGM) values, and zero Second Vertical Derivative (SVD) values as well as Multi Scale-Second Vertical Derivative (MS-SVD) analysis. The results of gravity subsurface structure interpretation are positively correlated with MT parameter analysis (splitting curve) which can indicate subsurface structure zones. The combined interpretation of surface and subsurface structures identified 5 structures (F1, F2, F3, F4, and F5) classified as Certain Structures (F1, F2, F3, and F4) and Estimated Structure (F5) that have a northwest-southeast orientation. The northwest-southeast oriented F3 structure is the main structure that acts as a fluid conduit (permeability zone) as evidenced by the manifestation of chloride-type hot springs. Based on the results of 3-D MT inversion modeling and 2-D gravity forward modeling, it can delineate the reservoir zone at a depth of 1500 - 200 meters controlled by the F3 structure and the reservoir zone is associated with metasedimentary rocks which can later determine the location of drilling wells. To visualize the geothermal system comprehensively, a conceptual model was developed by integrating geophysical models that have optimum data quality with geological and geochemical data that are correlated, so that it can be used as a basis and guide in determining the location of production well development and reinjection and reduce the risk of failure in drilling targets."
Jakarta: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
Marmelia Puja Dewi
"Panas bumi sangat penting bagi pengembangan sistem energi berkelanjutan di Indonesia. Negara ini memiliki keistimewaan berupa potensi cadangan panas bumi setara dengan 29 Gigawatt-listrik. Namun, memanen potensi sebesar itu bukanlah sesuatu yang mudah, karena proyek panas bumi bersifat padat modal, kompleks, dan peka terhadap ketidakpastian dan risiko—akibatnya, proyek panas bumi menjadi investasi yang kurang menarik. Selain itu, karena ketidakpastian yang mendalam, keputusan-keputusan sulit seringkali harus dibuat berkenaan dengan kelanjutan proyek panas bumi karena alasan keuangan. Langkah-langkah tata kelola tambahan, seperti pembiayaan berkelanjutan, diperlukan untuk memastikan kelangsungan proyek dalam jangka panjang. Dalam rangka berkontribusi mengatasi masalah tersebut, penelitian ini bertujuan mengembangkan sebuah model pembiayaan berkelanjutan bagi proyek panas bumi di Indonesia. Dalam penelitian ini, pembiayaan berkelanjutan diartikan sebagai skema pembiayaan yang atraktif dan robust—mampu memberikan kinerja finansial jangka panjang yang memuaskan secara konsisten pada berbagai skenario perubahan yang disebabkan oleh ketidakpastian dan risiko. Untuk keperluan tersebut, penelitian ini menggunakan pendekatan Analisis Kebijakan dan Analisis Keuangan yang dikombinasikan dengan metode Exploratory Modelling and Analysis (EMA). Secara khusus, penelitian ini menerapkan Exploratory System Dynamics Modelling and Analysis (ESDMA) sebagai paduan pemodelan Sistem Dinamis (System Dynamics) dan EMA, serta memperkenalkan penggunaan Exploratory Financial Modelling and Analysis (EFMA) sebagai kombinasi pemodelan finansial dengan Discounted Cash Flow (DCF) dan EMA. ESDMA digunakan untuk menganalisis kompleksitas proyek panas bumi dan mengeksplorasi alternatif kebijakan pembiayaan yang efektif dan kokoh atau robust di bawah kondisi ketidakpastian mendalam; sedangkan EFMA diterapkan untuk menganalisis kinerja keuangan proyek dan mengeksplorasi skema pembiayaan yang menarik dan kokoh atau robust di bawah kondisi ketidakpastian mendalam. Selanjutnya, luaran dari simulasi ESDMA dan EFMA diselaraskan untuk menghasilkan rumusan model pembiayaan berkelanjutan beserta alternatif strategi penerapannya untuk proyek panas bumi di Indonesia. Sebagai hasil penelitian, model pembiayaan yang diusulkan merupakan kombinasi feed-in tariff (FIT) dengan program derisking pemboran sumur eksplorasi. Kedua program ini harus berdampingan agar tingkat keekonomian tetap atraktif dan robust. Selain itu diperlukan mekanisme kordinasi kelembagaan yang tersentralisasi agar model ini dapat diimplementasikan.

Geothermal is vital for sustainable energy systems development in Indonesia. The country is privileged with estimated geothermal reserves equivalent to 29 Gigawatt- electric. However, harvesting such massive potential is precarious since geothermal projects are capital intensive, complex, and sensitive to uncertainty and risk—thus, the projects become a less attractive investment. Moreover, due to deep uncertainties, difficult decisions often have to be made regarding geothermal projects (dis)continuation for financial reasons. Additional governance measures, such as sustainable financing, are required to ensure the viability of the projects in the long run. As a contribution to address the concern above, this study aims to develop a sustainable financing model for geothermal projects in Indonesia. Herein, a sustainable financing model is defined as an alternative financing scheme that is attractive and robust—able to provide a consistently satisfying long-term financial performance in various scenarios of change due to uncertainty and risk. For this purpose, the study combines Policy Analysis and Financial Analysis approaches with Exploratory Modelling and Analysis (EMA). More specifically, the study employs Exploratory System Dynamics Modelling and Analysis (ESDMA) as a combination of System Dynamics modelling and EMA; and introduces the use of Exploratory Financial Modelling and Analysis (EFMA) as an integration of financial modelling with Discounted Cash Flow (DCF) and EMA. ESDMA is used to analyze the complexity of geothermal projects and to explore robust financing policies under deep uncertainty; while EFMA is used to analyze the project's financial performance and to explore attractive and robust financing schemes under deep uncertainty. Aligning the results from ESDMA and EFMA, a sustainable financing model for geothermal projects and its alternative implementation strategies are formulated. As a result, the proposed financing model is a combination of Feed In Tariff (FIT) with an exploration well drilling program that eliminates risk. These two programs must coexist so that the economic level remains attractive and robust. In addition, a centralized institutional coordination mechanism is needed so that this model can be implemented."
Depok: Fakultas Teknik Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Wicitra Diwasasri
"Penelitian kualitatif ini membahas mengenai hambatan pengembangan energi terbarukan panas bumi di Indonesia dalam kurun waktu 2010-2017. Pertanyaan utama dari penelitian ini adalah 'Faktor-faktor apa saja yang menjadi penyebab hambatan pengembangan energi terbarukan geothermal panas bumi di Indonesia tahun 2010-2017?'. Untuk menjawab pertanyaan penelitian tersebut penulis menggunakan teori utama yakni barrier renewable energy penetration serta dibantu dua konsep Multi-Level Governance MLG dan Central-Local Relation, dimana Barrier renewable energy penetration dan MLG lebih banyak digunakan untuk melihat permasalahan institusional yang menjadi kendala bagi pengembangan energi panas bumi di tingkat pusat, sementara central-local relation akan lebih ditekankan untuk menganalisis pengaruh desentralisasi dalam menghambat pengembangan energi terbarukan.
Kesimpulan dari penelitian ini adalah terdapat empat faktor yang dominan menjadi penyebab hambatan pengembangan energi terbarukan panas bumi yakni institusional, posisi ekonomi energi terbarukan yang marjinal, kebutuhan jangka pendek yang mendesak dari proyek listrik nasional dan desentralisasi menjadi faktor yang menghambat energi terbarukan panas bumi dalam kurun waktu 2010-2017.

This qualitative research discusses challenges implementation of geothermal energy 2010 2017. The main question which is raised in this research is what are the factors which obstacled the implementation of geothermal energy in Indonesia 2010 2017. To answer this question, renewable energy penetration theory is used. Another framework which is used in this research are Multi Level Governance and Central Local relation. Barrier to renewable energy penetration and MLG are mostly focused to see the institutional problem of geothermal in the central government, while central local relation discusses how decentralization detain the implementation of renewable energy.
This research concluded that there are four main factors which detained the implementation of geothermal as renewable energy in Indonesia in 2010 2017, formal institution, marginal economy needs, electrification government program and decentralization.
"
Depok: Fakultas Ilmu Sosial dan Ilmu Politik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pinandhita Ardhana Suryafajar
"Lapangan Daerah Lainea, Kabupaten Konawe Selatan, Provinsi Sulawesi Tenggara, merupakan salah satu wilayah di Indonesia yang memiliki potensi panas bumi. Penelitian ini menggunakan dua metode yaitu, metode analisis geokimia air dan metode penginderaan jauh. Tujuan penelitian adalah menentukan daerah yang berpotensi dalam dilakukannya eksplorasi panas bumi lebih lanjut. Terdapat persebaran manifestasi panas bumi berupa air panas dan air dingin yang terdiri dari dari satu mata air dingin dan dua belas mata air panas. Pada analisis dari ketiga belas manifestasi permukaan panas bumi berdasarkan analisis geokimia air didapatkan bahwa tipe air panas bumi menunjukan tipe air bikarbonat. Sumber air panas bumi bersumber dari satu reservoir yang sama serta kondisi air panas berada di fase immature waters dan air panas berasal dari air meteorik. Berdasarkan geoindikator didapatkan zona upflow berada di titik APL-3. Pada metode penginderaan jauh mengintegrasikan antara data primer meliputi LST, NDVI, dan FFD serta data sekunder meliputi data geologi dan manifestasi permukaan. Melalui analisis tersebut, didapatkan hasil bahwa terdapat dua area potensi panas bumi. Pertama, Area potensi A terletak pada Daerah Lainea dengan koordinat UTM 459539 – 459298 mE dan UTM 9516156 – 9515231 mN serta memiliki luas 256 hektar. Kedua, area potensi B terletak pada Daerah Kaendi dengan koordinat 455202 – 455542 mE dan 9517840 – 9517577 mN serta memiliki luas 26 hektar.

Lainea Region, South Konawe District, Southeast Sulawesi Province, is one of the many areas in Indonesia with geothermal potential. This research uses two methods—water geochemistry analysis and remote sensing method. This research aims to determine which area has the potential for further geothermal exploration. Firstly, there are distributions of geothermal manifestations in the form of hot and cold springs, consisting of one cold spring and twelve hot springs, respectively. Within the analysis of these thirteen manifestations of the geothermal surface according to the water geochemistry analysis, it was found that the geothermal water consists of bicarbonate water. The geothermal water source comes from the same reservoir, and the condition of the hot spring in the immature waters phase comes from the meteoric waters. Based on the geoindicator, there is an upflow zone at the APL-3 point. Secondly, through the remote sensing method—integrating the primary data such as LST, NDVI, and FFD with secondary data such as geological data and surface manifestations. This analysis obtains that there are two potential geothermal areas. First, Potential Area A, located in Lainea Region with the coordinate UTM 459539 – 459298 mE and UTM 9516156 – 9515231 mN, covers 256 hectares of the area. Second, Potential Area B is in Kaendi Region with the coordinates 455202 – 455542 mE dan 9517840 – 9517577 mN and covers 26 hectares."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Bayu Fatwa Dzikrullah
"Proses identifikasi dalam kegiatan eksplorasi Geotermal menjadi salah satu upaya dalam meminimalisasi risiko ketidaksuksesan. Pemanfaatan suatu lapangan Geotermal  seperti pada lapangan X memiliki proses yang panjang dan berisiko tinggi. Setelah diidentifikasi dengan baik pada kasus-kasus ketidaksuksesan eksplorasi, kualitas data, dan tipe sistem Geotermal, selanjutnya hasil identifikasi tersebut diaplikasikan dalam proses pengolahan data Magnetotellurik (MT) pada lapangan X.
Hasil yang diperoleh ialah lapangan X teridentifikasi sebagai lapangan Geotermal bersistem Hidrotermal Temperatur Tinggi Natural-2 Fase, dengan estimasi suhu reservoir 245o C dan estimasi energi 238 MW. Hal tersebut menggambarkan bahwa lapangan X dapat dikembangkan lebih lanjut, salah satunya dengan proses pengeboran sumur eksplorasi dengan rekomendasi titik pada koordinat 11400.00 m N dan 63100.00 m E sekitar 4 km dari puncak gunung L.

The identification process in geothermal exploration activities is an effort to minimize the risk of unsuccessfulness. The use of a Geotermal field such as in field X has a long and high-risk process. After being well identified in cases of exploratory success, data quality, and geothermal system type, the identification results were then applied in the Magnetotelluric (MT) data processing on the X field.
The results obtained were that the X field was identified as a Hydrothermal Geothermal field High Temperature Natural-2 Phase, with an estimated reservoir temperature of 245 oC and an estimated energy of 238 MW. This illustrates that the X field can be further developed, one of which is the process of drilling exploration wells with recommendations for points at coordinates 11400.00 m N and 63100.00 m E about 4 km from the peak of Mount L.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Noval Suryadi
"

Dalam rangka upaya memenuhi target  bauran energi baru terbarukan terkait kapasitas terpasang Pembangkit Listrik Panas Bumi (PLTP) pada tahun 2025 sebesar 7.200 MW, dengan potensi sumber daya panas bumi sebesar 23.060 MW baru sebesar 2.360 MW yang dimanfaatkan menjadi Pembangkit Listrik Tenaga Panas Bumi (PLTP). Pada Wilayah Kerja Panas Bumi “XYZ” terdapat potensi cadangan panas bumi 464 MW, namun baru dimanfaatkan menjadi Pembangkit Listrik Panas Bumi sebesar 55 MW (12%). Untuk meningkatkan kapasitas pembangkit pada Wilayah Kerja Panas Bumi “XYZ” yang telah beroperasi dapat menurunkan tingkat risiko sumber daya panas bumi, menekan biaya investasi awal dan mengurangi waktu pembangunan pembangkit karena proses pengembangan panas bumi tidak dimulai dari tahap awal. Tujuan penelitian ini adalah untuk mengevaluasi dan menganalisis  dalam investasi pengembangan kapasitas pembangkit listrik panas bumi menggunakan Simulasi Monte Carlo dalam pengambilan keputusan, dengan memperhitungkan variabel-variabel ketidakpastian seperti faktor kapasitas, tingkat suku bunga, inflasi, pajak, proporsi pembiayaan ekuitas, dan jangka waktu pembangunan. Hasil analisis  menunjukkan bahwa skema investasi pengembangan kapasitas pembangkit dengan cara memaksimalkan cadangan panas bumi menghasilkan  peningkatan probabilitas Net Present Value bernilai positive.


In order to meet the renewable energy mix target related to the installed capacity of Geothermal Power Plants (PLTP) in 2025 of 7,200 MW, with the potential of geothermal resources of 23,060 MW, only 2,360 MW has been utilised as a Geothermal Power Plant. In the Geothermal Working Area "XYZ" there are potential geothermal reserves of 464 MW, but only 55 MW (12%) has been utilised as a Geothermal Power Plant. To increase the generating capacity in the "XYZ" Geothermal Working Area that has been operating can reduce the risk level of geothermal resources, reduce initial investment costs and reduce plant construction time because the geothermal development process does not start from the initial stage. The purpose of this study is to evaluate and analyse the investment in geothermal power plant capacity development using Monte Carlo Simulation in decision making, by taking into account uncertain variables such as capacity factor, interest rate, inflation, tax, proportion of equity financing, and construction period. The results of the analysis show that the investment scheme for developing generating capacity by maximising geothermal reserves results in an increase in the probability of a positive Net Present Value.

"
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dimas Ahmad Syafii
"Keberadaan sistem panas bumi dapat diperkirakan dengan melihat manifestasi yang muncul di permukaan tanah akibat adanya struktur geologi, seperti sesar/patahan pada daerah potensi panas bumi. Untuk mengetahui keberadaan struktur patahan di lapangan ?DAS? digunakan metode gravitasi. Dalam metode gravitasi terdapat metode lanjutan untuk mengidentifikasi patahan, yaitu FHD (First Horizontal Derivative) dan SVD (Second Vertical Derivative). Metode tersebut memanfaatkan turunan dari nilai anomali gravitasi. Output dari metode tersebut adalah peta kontur yang menunjukkan keberadaan suatu patahan.
Terdapat delapan patahan yang teridentifikasi oleh metode FHD dan SVD, tujuh patahan merupakan patahan normal dan satu patahan merupakan petahan naik. Hasil tersebut diintegrasikan dengan data pendukung, seperti data MT, geologi, geokimia, data sumur dan model sintetik. Dari data-data tersebut dapat dibuat model densitas dan model konseptual sistem panas bumi daerah ?DAS?. Model densitas menunjukkan densitas clay cap sebesar 2,25 gr/cm3, densitas reservoir sebesar 2,41 gr/cm3, dan densitas heat source sebesar 2,81 gr/cm3. Berdasarkan model konseptual, fumarol dan mata air panas SPG merupakan zona upflow, sedangkan mata air panas BB 1 dan BB 2 merupakan zona outflow.

The existence of geothermal system can be assessed by identifying distribution of manifestations that appears on the surface. The manifestations appear because of geology structure, like fault structure on geothermal potention area. Gravity method is used to knowing the exsistence of fault structure on ?DAS field. In gravity method, there are the advanced methods to identify fault. They are FHD (First Horizontal Derivative) and SVD (Second Vertical Derivative). Those methods use derivative of gravity anomaly value. The output of FHD and SVD is contour map that indicates the exsistence of fault.
There are eight faults identified by FHD and SVD, they are seven normal faults and a reverse fault. The FHD and SVD contour map will be integrated with other support data, such as resistivity section of MT, geology data, geochemistry data, thermal gradient data, and sintetic model. Those data result density model and conseptual model of ?DAS? field geothermal system. Density model show the density of clay cap is 2,25 gr/cm3, reservoir is 2,41 gr/cm3, and heat source is 2,81 gr/cm3. Base on conseptual model, fumarole and hot spring SPG are upflow zone, while hot springs BB 1 and BB 2 are outflow zone.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S63686
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>