Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 192078 dokumen yang sesuai dengan query
cover
Yuli Herawati
"Kuantifikasi citra terhadap pengukuran resolusi spasial, umumnya menggunakan protokol standar yang diterbitkan oleh National Electrical Manufacturers Association (NEMA). Namun, metode ini memiliki keterbatasan pada metode fitting data yang dilakukan. Akurasi yang lebih baik diberikan oleh fungsi Gaussian. Selanjutnya, penentuan resolusi spasial seperti berdasarkan Point Spread Function (PSF) dapat dipengaruhi oleh keberadaan noise atau error dalam data yang dapat menurunkan kontras citra. Oleh karena itu, untuk menjamin akurasi kuantifikasi citra, dilakukan dengan memastikan error sekecil mungkin dan memiliki perkiraan yang dapat diandalkan tentang seberapa besar error tersebut. Penelitian ini ditujukan untuk menyelidiki bagaimana tingkat noise yang berbeda pada pengukuran Full Width at Half Maximum (FWHM) berdasarkan metode NEMA dan Gaussian mempengaruhi keakuratan sistem pencitraan. FWHM digunakan untuk mengkarakterisasi resolusi spasial berdasarkan profil PSF. Hasil yang diperoleh diharapkan dapat memberikan informasi pada fisikawan medis mengenai pengaruh error dari pengukuran FWHM dalam rangka optimasi layanan klinis di rumah sakit. Dalam penelitian ini, model error yang digunakan adalah kombinasi model error proporsional dan Fractional Standard Deviation (FSD). Hasil penelitian menunjukkan terdapat peningkatan relatif deviasi FWHM terhadap variasi FSD 1% hingga 5% pada bidang dua dimensi dan tiga dimensi berdasarkan metode NEMA dan Gaussian. Peningkatan ini menjelaskan bahwa semakin tinggi tingkat noise pada sistem pencitraan, maka akan semakin mempengaruhi pengukuran FWHM yang berdampak pada penurunan kontras citra. Selanjutnya, terdapat korelasi antara error pixel value dan error FWHM. Semakin tinggi persentase nilai error pixel value pada sistem pencitraan, maka akan semakin mempengaruhi peningkatan persentase nilai error pada pengukuran FWHM.

Image quantification of spatial resolution measurements, generally using standard protocols published by the National Electrical Manufacturers Association (NEMA). However, this method has limitations on the data fitting method performed. Better accuracy is given by Gaussian function. Furthermore, spatial resolution determination such as based on Point Spread Function (PSF) can be influenced by the presence of noise or errors in the data that can decrease image contrast. Therefore, to ensure the accuracy of image quantification, it is done by ensuring the slightest possible error and having a reliable estimate of how big the error is. This study is intended to investigate how different noise levels in Full Width at Half Maximum (FWHM) measurements based on NEMA and Gaussian methods affect the accuracy of imaging systems. The FWHM is used to characterize spatial resolution based on PSF profiles. The results are expected to provide information to medical physicists about the effect of error in FWHM measurement to optimize clinical services in hospitals. In this study, the error model used is a combination of the proportional error model and the Fractional Standard Deviation (FSD). The results showed that there was an increase in the relative deviation of FWHM to the FSD variation of 1% to 5% in two-dimensional and three-dimensional fields based on the NEMA and Gaussian methods. This increase explains that the higher the noise level in the imaging system, the more it affects the FWHM measurement which has an impact on the decrease in image contrast. Furthermore, there is a correlation between the pixel value error and the FWHM error. The higher the percentage of error pixel value in the imaging system, the more it will affect the increase of percentage error FWHM measurement."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amran Sujudi
"Citra tipikal hitam-putih merupakan citra kontinyu karena gray level shade-nya bcrgabting secara kontinyu dalam intensitas dan spatiality.
Dalam suatu pemrosesan citra dilakukan proses kuantisasi, dimana citra terkuantisasi tidak kontinyu, namun tersusun dari piksel diskrit.
Resolusi citra didefinisikan sebagai kemampuan untuk memproduksi citra dengan kualitas visual dan dapat dibandingkan dcngan citra kontinyu aslinya. Diperlukan jumlah piksel nicmadai untuk penampilan kontinyu spasial dan juga jumlah gray level untuk penampilan depth of field dan kontras. Piksel merupakan elemen utama dalam resolusi citra diskrit.
Dalam tesis ini diusulkan peningkatan resolusi citra untuk pencitraan medik memakai Filter Infinite Impulse Response. Tiga teknik peningkatan resolusi citra yang dikenal, masing-masing : (1) Pendekatan frekuensi/Fast Fourier Transform dari teorema sampling, (2) Pendekatan spasial memakai fungsi interpolasi; dan (3) pendekatan alternatif memakai Infinite Impulse Response Filter (mirip dengan pendekatan FFT, namun lebih mudah dalam pelaksanaan).
Peningkatan resolusi citra melalui FFT dilakukan dengan, pertama, memakai sifat spektrum yang akan cepat mcnurun akibat meningkatnya frekuensi dan kedua, memakai teorema sampling untuk obyek oversumpled.
Peningkatan resolusi citra memakai interpolasi spasial dilakukan dengan mengkonvolusikan citra yang sudah diekspansi 2 N x 2 N dengan operator interpolasi. Hasilnya tampak agak buram, namun hal ini dapat di-deblur memakai high pass filter.
Peningkatan resolusi citra memakai Infinite Impulse Response fitter, meningkatkan ukuran citra melalui replikasi piksel dan garis horisontal. Effeknya, terjadi peningkatan perioda sampling pada arah horisontal maupun vertikal. Pendekatan ini sama dengan pendekatan FFT dan langkah-langkah tersebut di atas sama dengan menerapkan fungsi interpolasi square.
Kualitas citra yang dihasilkan sama dengan pada pendekatan FFT.

Typical black and white images are called continuous - tone images because the shade of gray level blend continuosly both in intensity (level) and spatiality (area). The quantized images is not continuous, but is composed of discrete pixels with each having a discrete gray level assigned to it. Image resolution may be defined as the ability to reproduce images with a visual quality that is comparable to the continuous-tone original.
This requires a suffient number of pixels to give the appearance of spatial continuity and a sufficient number of gray levels to give the appearance of depth and contrast. The pixel is the basic element.of picture resolution in the discrete pixel system.
In the next discussion, three means of doubling image resolution are compared respectively ; (1) The Fast Fourier Transform Frequency approach of the sampling theorem, (2) through spatial approach using interpolation functions; and (3) an alternative approach using Infinite Impulse Response filter, which is similiar to the FFT approach, but much simpler to implement.
Doubling image resolution through FFT are implemented by using, first, the rapidly decreasing spectrum with increasing frequency and second, the whittakershannon sampling theorem for oversampled objects.
Doubling using spatial interpolation are held by convolving the stretched 2 N x 2 N image with an interpolation operator. The result is slightly blurry, it is, however, possible to deblur through high-pass filtering.
Doubling image resolution using Infinite Impulse Respons filter, double the image size by replication of pixels and horizontal lines this has the effect of increasing the horizontal and vertical sampling periods to twice their values. The approach is similar to the FFT approach and the step mentioned above is equivalent to applying the square interpolation function. The enlarged image obtained should be similar to the one obtained from the FFT approach."
2001
T8117
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Aditiya Pratama
"Kendaraan roda dua atau yang biasa disebut sebagai motor merupakan kendaraan yang awam ditemukan khususnya di Negara Indonesia. Kendaraan yang sangat mudah untuk digunakan dan terjangkau harganya menjadikannya kendaraan nomor satu untuk digunakan sehari-hari. Banyak regulasi yang telah mengatur tentang keamanan dan kenyamanan untuk berkendara, namun masih banyak pihak yang melanggar hal tersebut. Oleh karena itu diperlukannya sebuah alat bantu yang dapat mendeteksi dan meregulasi pengendara sepeda motor. Menggunakan deep learning, komputer dapat mengelolah citra dengan tingkat akurasi yang tinggi dalam mendeteksi objek maupun klasifikasi objek. Salah satu metode Deep Learning yang digunakan untuk pengelolahan citra dan klasifikasi objek adalah YOLOv5 sebagai model utama. Tujuan dari Skripsi ini adalah untuk mengimplementasikan sistem detektor pengendara motor tanpa helm berbasi pengolahan citra dengan metode YOLOv5 dan melihat tingkat akurasi yang didapatkan. Hasil percobaan pada penelitian ini membuktikan bahwa sistem mampu melakukan deteksi dan kalkulasi dengan akurasi yang cukup tinggi yaitu sekitar 40 %. Hal ini sangat dipengaruhi dengan adanya jenis metode penentuan ID yang digunakan.

Two-wheeled vehicles or commonly referred to as motorbikes are vehicles that are commonly found, especially in Indonesia. A vehicle that is very easy to use and affordable, making it the number one vehicle for everyday use. Many regulations have regulated the safety and comfort of driving, but there are still many parties who violate this. Therefore we need a tool that can detect and regulate motorbike riders. Using deep learning, computers can manage images with a high degree of accuracy in detecting and classifying objects. One of the Deep Learning methods used for image processing and object classification is the YOLOv5. The purpose of this thesis is to implement an image processing-based helmetless motorcycle detector system using the YOLOv5 method and see the level of accuracy obtained. The experimental results in this study prove that the system is capable of performing detection and calculations with a fairly high accuracy of around 40%. This is strongly influenced by the type of ID determination method used."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Indah Agustien Siradjuddin
"Masalah yang biasa terjadi dalam pembuatan sistem pengenalan wajah adalah jumlah dimensi yang terlalu besar untuk diproses ke dalam classifier, sehingga biaya komputasi yang dibutuhkanpun akan semakin besar pula. Penelitian berikut mencoba untuk mereduksi dimensi dalam ruang spatial akan tetapi dari hasil reduksi dimensi ini tidak membuat proses ekstraksi fitur kehilangan informasi penting yang mengakibatkan penurunan akurasi pengenalan.
Reduksi dimensi dalam ruang spatial ini didapatkan dengan cara membangkitkan sejumlah garis pada data citra secara acak. Ada dua metode dalam membangkitan garis yaitu Fitur Garis Acak (FGA) dan Template Fitur Garis Acak (TFGA). Pada FGA, sejumlah garis dibangkitkan pada seluruh data citra secara acak. Sedangkan TFGA, sejumlah garis dibangkitkan hanya satu kali saja dan himpunan garis ini yang akan digunakan untuk membangkitkan garis pada data citra yang lain. Dari masing-masing garis ini dibangkitkan sejumlah spatial window. Vektor representasi citra didapatkan dari rata-rata intensitas yang terdapat pada spatial window tersebut. Vektor representasi citra ini akan dijadikan fitur untuk classifier. Classifier yang digunakan adalah k-nearest neighborhod dan backpropagation sebagai pembanding.
Dari hasil percobaan menggunakan database weizmann, didapatkan bahwa pengenalan akan lebih stabil jika metode untuk membangkitkan garis adalah TFGA. Selain stabil dengan metode TFGA ini akurasi pengenalan lebih baik dibandingkan dengan metode FGA pada jumlah garis yang sama. Pada jumlah garis yang terkecil dengan menggunakan classifier k-nearest neighborhod, rata-rata akurasi pengenalan metode FGA adalah 46.67% sedangkan dengan TFGA akurasi pengenalan adalah 57.14%. Dengan classifier pembanding backpropagation dan menggunakan metode TFGA didapatkan rata-rata akurasi pengenalan 78.29%. Secara umum dari keseluruhan metode semakin bertambah jumlah garis maka semakin meningkat pula tingkat akurasi pengenalan."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2006
T529
UI - Tesis Membership  Universitas Indonesia Library
cover
Irwan Haryanto
"Skripsi ini menjelaskan suatu metode deteksi kecepatan pengelasan yang bisa diaplikasikan untuk simulator pengelasan menggunakan augmented reality. Dalam proses pengelasan, faktor kecepatan pengelasan menjadi sangat penting karena merupakan salah satu faktor yang menentukan bagus tidak nya kualitas pengelasan. Welding simulator ini nantinya bisa digunakan sebagai bentuk pelatihan pengelasan dengan biaya yang relatif murah. Metode ini menggunakan software ARToolkit,OpenGL library dan Autodesk 3ds Max dalam pembuatannya. Dalam perhitungannya, metode ini menggunakan algoritma perbedaan koordinat dalam satuan waktu yang diambil dari besarnya frame per second (FPS) dari sebuah kamera. Setelah metode ini berhasil dibuat, data pengukuran diambil untuk mendapatkan seberapa tepat dan berapa kesalahan (error) pendeteksian kecepatan pada simulator dari kecepatan yang yang sebenarnya dengan parameter tingkat intensitas cahaya yang berbeda. Analisis dilakukan dan didapatkan nilai kesalahan yang tidak terlalu besar sehingga metode berhasil dibuat dan kedepannya pengembangan lebih lanjut bisa dilakukan untuk membuat fitur-fitur yang lebih canggih.

This paper explain about travel angle detection that able to use for welding simulator using augmented reality. Travel speed is one of important parameter that able to influence the welding quality. In the future, this simulator can be used by students who want to join welder training with low cost. This method used ARToolkit, OpenGL library and Autodesk 3ds Max software for build the simulator. The travel speed detection used distance of the coordinat per time unit that included inside of frame per second (FPS) in camera specification. After this method built successfully, data of speed detection was analized for how accurate and how many error from speed detection to actual speed with different lighting condition. The speed detection error was not far away from the actual speed, so this simulator can be development more to get more important feature on welding process in the future.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59820
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aniati Murni Arymurthy
"Makalah ini membahas dua pilihan penerapan struktur basis data citra pada sistem pencarian citra berbasis isi. Pendekatan pertama menggunakan folder untuk menyimpan berkas citra dan Java object serialization untuk menyimpan data citra. Pendekatan kedua menggunakan basis data Data Base Management System MySQL untuk menyimpan berkas dan data citra. Kedua pendekatan dibahas dari aspek penerapan struktur basis data untuk tujuan pengembangan sistem pencarian citra berbasis isi yang efisien. Data yang tidak terstruktur dan proses clustering data lebih mudah ditangani dengan struktur basis data dari pendekatan pertama. Data yang jumlahnya besar dan terstruktur serta proses indexing lebih mudah ditangani dengan struktur basis data dari pendekatan kedua. Sistem pencarian citra berbasis isi lebih banyak melakukan kueri jenis select dibandingkan dengan insert dan update data, dalam hal ini kedua pendekatan dapat memenuhinya dengan baik. Secara umum, pendekatan kedua dianggap memberikan dukungan yang baik dalam penyimpanan dan manipulasi data, serta dapat mengurangi upaya dan waktu yang dibutuhkan pada pengembangan sistem."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2008
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Sardy S.
Depok: Fakultas Teknik Universitas Indonesia, 1992
LP-Pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Aniati Murni Arymurthy
"This dissertation describes the synergy use of remote sensing data from multi-temporal and multi sensor (optical and radar) for improving our understanding of the land-cover structural phenomena. A tropical country like Indonesia has a high cloud coverage throughout the year with a maximum during the rainy season, and hence the availability of cloud-free optical images is minimal. To solve this problem, radar images have been intensively introduced. The radar images are cloud-free but their use is hampered due to their speckle noise and topographic distortions, and the lack of a suitable radar image classification system.
In many cases, the use of optical or radar image alone is not sufficient. Therefore, the main objectives of this research are: (i) to develop a framework for multi date and multi sensor (optical and radar) image classification; (ii) to solve the cloud cover problem in optical images; and (iii) to obtain a more consistent image classification using multi date and multi sensor images. We have proposed a framework for multi date and multi sensor image classification based on a uniform image classification scheme. The term uniform means that the same procedure can be used to classify optical or radar images, low-level mosaic or fused images, single or multiple feature images.
To be able to conduct a multi temporal and multi sensor analysis, we have unified the optical and radar image classification procedure after finding that both optical and radar images consist of homogeneous and textured regions. A region is considered as homogeneous if the local variance of gray level distribution is relatively low, and a region is considered as textured if the local variance is high. We used a multivariate Gaussian distribution to model the homogeneous part and a multinomial distribution to model the gray level co-occurrences of the textured part, and applied a multiple classifier system to improve the classification accuracy.
The main advantages of the uniform classification scheme are as follow. First, we can tune the homogeneous-textured threshold value parameter in order to obtain an optimal result by allowing the classifier working as a single (conventional) or multiple classifier system. The classifier can have a better or at least the same classification accuracy as the conventional one. Second, we can use either single-band or multi-band input images. This will make it possible to classify a. radar image based on multi-model texture feature images or to classify multi spectral optical images. Third, we can use the same procedure to classify any input images. Compared to the conventional classifiers, the multiple classifier system can improve the classification result from 0% to 20% for radar images and from 0% to 2% for optical images.
The proposed framework incorporates the image mosaicking and data fusion at the low-level stage (before the classification process) as well as at the high-level stage (after the classification process). For cloud cover removal, the image mosaicking at the low-level stage is usually done using multi temporal optical images, whereas mosaicking at the high-level stage is applied to the classified optical and radar images. To be able to obtain a cloud-free image, we have modified the existing Soofi and Smith algorithm which is using multi temporal optical images to an algorithm using multi sensor images. In the high-level data fusion, we have also been able to incorporate a mechanism for cloud cover removal by omitting the information from the optical sensor and using only the information from the radar sensor. According to a case study in our experiment, the cloud cover removal and image classification using the low-level image mosaicking, the high-level image mosaicking, and the high-level data fusion gave 80.2%, 76.2%, and 80.5% classification accuracy, respectively.
The high-level data fusion combines the decisions from several input images to obtain a consensus of classified image. We have applied both the maximum joint posterior probability and the highest rank method for the decision combination functions. We have utilized two existing data fusion methods and have proposed an alternative data fusion method based on the compound conditional risk. According to the experimental results, the decision combination function based on the maximum joint posterior probability favors the optical feature image, while the highest rank method favors the radar feature image. The preference of using the maximum joint posterior probability results in the domination of optical features in the fusion result, and the classification accuracy of the fused image can be better 8.5% in average than the individual radar classified image."
1997
D235
UI - Disertasi Membership  Universitas Indonesia Library
cover
Dinar Ayu Rizkiya
"ABSTRAK

Skripsi ini membahas tentang simulasi sistem untuk mendeteksi pejalan kaki. Dikarenakan hak pejalan kaki yang masih dipandang sebelah mata, maka tidak pernah luput dari kejadian yang tidak diinginkan seperti kecelakaan. Penelitian skripsi ini bertujuan agar mengetahui bagaimana kinerja sistem untuk mendeteksi pejalan kaki. Simulasi ini memanfaatkan aplikasi MATLAB sebagai hasil output-nya. Dengan menggabungkan tiga metode sebagai acuannya yaitu Background Subtraction, Histogram of Oriented Gradient (HOG) dan Local Binary Pattern (LBP), memberikan output dimana dapat mendeteksi pejalan kaki. Vision.PeopleDetector digunakan untuk mendeteksi pejalan kaki secara tegak dan GetMapping untuk LBP.

Dari sistem yang dibuat dilakukan analisis berdasarkan waktu dan akurasi deteksi dengan membandingkan empat metode, yaitu HOG, Background Subtraction-HOG, HOG-LBP dan Background Subtraction-HOG-LBP. Hasilnya adalah metode gabungan Background Subtraction-HOG-LBP tidak sebaik metode yang lain. Waktu eksekusi selama 255,41 second. Akurasi 10 fps sebesar 59,5 % dan 20 fps sebesar 51%. Akurasi resolusi sebesar 640x480 42% dan 480x320 sebesar 44%.


ABSTRACT

This final assignment discusses about system simulation for pedestrian detection. Because of the rights of pedestrian who are still underestimated, then never escape from undesirable events such as accident. This research aims to find out how the system works to detect pedestrian. This simulation use MATLAB software as output. Pedestrian detection simulation combine three methods, there are Background Subtraction, Histogram of Oriented Gradient (HOG) and Local Binary Pattern (LBP). Vision.PeopleDetector used to detect pedestrian in an upright and GetMapping for LBP.

From the system, you can do analysis time and accuracy by comparing four methods, they are HOG, Background Subtraction-HOG, HOG-LBP and Background subtraction-HOG-LBP. The result is method of Background Subtraction-HOG-LBP is not as good as other methods. Elapsed time is 255,41 seconds. Resolution accuracy is 42% for 640x480 and 44% for 480x320.

"
Fakultas Teknik Universitas Indonesia, 2015
S59858
UI - Skripsi Membership  Universitas Indonesia Library
cover
Riska Aprian
"Akurasi hasil deteksi perubahan citra jarak jauh sangat tergantung pada akurasi metode klasifikasi yang digunakan. Salah satu cara untuk mendapatkan hasil yang lebih baik adalah dengan mengoptimalkan setiap prosedur pengolahan citra. Salah satunya dengan algoritma deteksi perubahan dengan menggunakan metode image differencing akan mendapatkan peta perubahan yang masih harus dianalisa sebagai prosedur klasifikasi citra binarisasi. Penelitian ini bertujuan melakukan kombinasi model penggabungan algoritma ambang. Serta membandingkan algoritma ambang untuk mendapatkan nilai ambang terbaik mengunakan fungsi entropi secara otomatis untuk memecahkan masalah deteksi perubahan dengan pendekatan klasifikasi data yang tidak tersedia. Dengan menggunakan asumsi model statistik untuk mengetahui kelas wilayah berubah dan tidak berubah yang menampilkan berbagai perkiraan algoritma ambang mengunakan analisa discriminan, entropi lokal, entropi gabungan, entropi global, relatif entropi lokal, relatif entropi gabungan dan relatif entropi global. Pada penelitian ini digunakan model fusi Markov random fields untuk menggabungkan informasi-informasi deteksi perubahan hasil identifikasi algoritma ambang yang lebih komprehensif dalam menunjang pembuat keputusan.
Penelitian ini menemukan bawa pengunaan algoritma analisa discriminan terlalu sensitive untuk mendeteksi perubahan. Tingkat akurasi deteksi wilayah berubah terbaik mengunakan metode analisa discriminan sebesar 99% namun juga terlalu sensitif terhadap perubahan yang ditunjukan dengan tidak hanya wilayah yang terbakar terdeteksi juga wilayah tidak terbakar. Akurasi deteksi terbaik yang dapat dicapai mengunakan fungsi entropi dimiliki oleh lokal relatif entropi (99%) dan lokal entropi (97%) yang menjadikan sangat baik adalah mempunyai kesalahan deteksi kecil. Algorima fusi mengunakan metode Markov memberikan akurasi deteksi terbaik sebesar 93%, lebih rendah dari kemampuan deteksi dengan algoritma ambang yang menggunakan fungsi entropi. Namun algoritma fusi MRF akan semakin memastikan wilayah yang berubah. Secara umum, ditemukan bahwa pengurangan jumlah pixel dalam variasi histogram dalam citra berpengaruh besar pada tingkat akurasi deteksi perubahan dan sensitifitas algoritma ambang untuk mendeteksi perubahan. Semakin rendah jumlah pixel dalam variasi histogram semakin baik klasifikasi wilayah berubah terdeteksi dan semakin cepat waktu pemprosesan."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2007
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>