Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 253644 dokumen yang sesuai dengan query
cover
Aritonang, Joshua Christopher
"Menurut laporan Ericsson Mobility Report (2018), bahwa Jumlah total langganan seluler ada di sekitar 7,9 miliar pada Q3 2018, dengan 120 juta pelanggan baru bertambah pada kuartal tersebut. Di Indonesia juga sudah cukup banyak orang yang melek dengan teknologi, terutama internet. Pada penelitian ini, peneliti ingin mencari tentang karakteristik dari aplikasi (mobile app) yang berbayar (purchase) dan gratis (Free), terhadap peluang usaha pada perusahaan baru (startup) di Indonesia. Pada penelitian ini akan dilakukan pengamatan pada big data dan big data analytics, dari hasil pengumpulan aplikasi dalam bentuk populasi pada Google Play dan Apple App Store Indonesia. Pengambilan data akan menggunakan bahasa pemrograman Python 3.7 dan Anaconda sebagai IDE (Integrated Development Environment) sebagai basis visualisasi dari data dan program. Pengumpulan data dan penelitian akan berjalan dimulai dari Januari 2020.

According to the Ericsson Mobility Report (2018), the total number of cellular subscriptions is around 7.9 billion in Q3 2018, with 120 million new customers increasing in the quarter. In Indonesia, there are many people who are literate with technology, especially the internet. In this study, researchers want to find out about the characteristics of the application (mobile app) that is paid and free with in-app purchases, to business opportunities in new companies (startups) in Indonesia. In this study, observations will be made on big data and big data analytics, from the results of collecting applications in the form of population on Indonesia Google Play and Apple App Store. Data processing will use the Python 3.7 programming language, and Anaconda as an IDE (Integrated Development Environment) as the basis for visualization of data and programs. Data collection and research will run starting from January 2020."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Aritonang, Joshua Cristopher
"Menurut laporan Ericsson Mobility Report (2018), bahwa Jumlah total langganan seluler ada di sekitar 7,9 miliar pada Q3 2018, dengan 120 juta pelanggan baru bertambah pada kuartal tersebut.. Di Indonesia juga sudah cukup banyak orang yang melek dengan teknologi, terutama internet.. Pada penelitian ini, peneliti ingin mencari tentang karakteristik dari aplikasi (mobile app) yang berbayar (purchase) dan gratis (Free), terhadap peluang usaha pada perusahaan baru (startup) di Indonesia. Pada penelitian ini akan dilakukan pengamatan pada big data dan big data analytics, dari hasil pengumpulan aplikasi dalam bentuk populasi pada Google Play dan Apple App Store Indonesia. Pengambilan data akan menggunakan bahasa pemrograman Python 3.7 dan Anaconda sebagai IDE (Integrated Development Environment) sebagai basis visualisasi dari data dan program. Pengumpulan data dan penelitian akan berjalan dimulai dari Januari 2020.

According to the Ericsson Mobility Report (2018), the total number of cellular subscriptions is around 7.9 billion in Q3 2018, with 120 million new customers increasing in the quarter. In Indonesia, there are many people who are literate with technology, especially the internet. In this study, researchers want to find out about the characteristics of the application (mobile app) that is paid and free with in-app purchases, to business opportunities in new companies (startups) in Indonesia. In this study, observations will be made on big data and big data analytics, from the results of collecting applications in the form of population on Indonesia Google Play and Apple App Store. Data processing will use the Python 3.7 programming language, and Anaconda as an IDE (Integrated Development Environment) as the basis for visualization of data and programs. Data collection and research will run starting from January 2020."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Fathan Muthahhari
"Tingginya jumlah kendaraan bermotor di Indonesia memiliki dampak kepada kualitas udara. Aplikasi Mahoni merupakan upaya solusi dari permasalahan tersebut dengan membawa konsep kota cerdas. Penulis melakukan pengembangan arsitektur microservice yang melayani fitur pada aplikasi Mahoni yaitu servis kualitas udara, perjalanan, dan penukaran poin menjadi kupon sesuai dengan kebutuhan pengguna. Aplikasi Mahoni dikembangkan dengan menggunakan arsitektur event-driven agar dapat mencatat beragam data yang berasal dari sensor udara dan aktivitas pengguna secara real-time. Digunakan message broker untuk mendapatkan throughput yang tinggi dan mempermudah integrasi dengan komponen big data yang memerlukan data stream untuk melakukan stream processing dan real-time analytics melalui change data capture. Data stream diolah menjadi keluaran yang dibutuhkan seperti visualisasi data menggunakan dashboard. Untuk mencapai hal tersebut, arsitektur Kappa diimplementasikan untuk membangun arsitektur big data yang scalable dan reliable. Keterhubungan implementasi keseluruhan arsitektur pada penelitian ini diuji dengan melakukan end-to-end testing. Hasil pengujian menunjukkan bahwa keseluruhan komponen sistem aplikasi Mahoni terhubung dengan baik dalam memenuhi kebutuhan pengguna. Komponen arsitektur event-driven terbukti dapat mengatasi data stream dengan throughput tinggi dan bersifat loosely-coupled sehingga integrasi komponen baru pada sistem lebih mudah. Komponen arsitektur big data juga terbukti dapat mengatasi pertumbuhan data dengan melakukan scaling sehingga menghasilkan sistem yang reliable.

The high number of motorized vehicles in Indonesia is causing air quality issues. To combat this problem, the Mahoni application introduces a smart city concept. It employs a microservice architecture, offering features such as air quality monitoring, travel assistance, and point redemption for coupons according to user needs. Event-driven architecture is utilized for real-time data collection from air sensors and user interactions. Message broker is used to get high throughput and facilitate integration with big data components that require data streams to perform stream processing and real-time analytics through change data capture. Stream data is processed into the required output such as data visualization using dashboards. To achieve this, Kappa architecture is implemented to build a scalable and reliable big data architecture. The connectedness of the implementation of the entire architecture in this study was tested by conducting end-to-end testing. The results of the test show that all components of the Mahoni application system are well connected in meeting user needs. The event-driven architecture component is proven to cope with high-throughput data streams and is loosely-coupled, allowing easy integration of new components. The big data architecture component is also proven to accommodate data growth by scaling, ensuring a reliable system."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohammad Riswanda Alifarahman
"Tingginya jumlah kendaraan bermotor di Indonesia memiliki dampak kepada kualitas udara. Aplikasi Mahoni merupakan upaya solusi dari permasalahan tersebut dengan membawa konsep kota cerdas. Penulis melakukan pengembangan arsitektur microservice yang melayani fitur pada aplikasi Mahoni yaitu servis kualitas udara, perjalanan, dan penukaran poin menjadi kupon sesuai dengan kebutuhan pengguna. Aplikasi Mahoni dikembangkan dengan menggunakan arsitektur event-driven agar dapat mencatat beragam data yang berasal dari sensor udara dan aktivitas pengguna secara real-time. Digunakan message broker untuk mendapatkan throughput yang tinggi dan mempermudah integrasi dengan komponen big data yang memerlukan data stream untuk melakukan stream processing dan real-time analytics melalui change data capture. Data stream diolah menjadi keluaran yang dibutuhkan seperti visualisasi data menggunakan dashboard. Untuk mencapai hal tersebut, arsitektur Kappa diimplementasikan untuk membangun arsitektur big data yang scalable dan reliable. Keterhubungan implementasi keseluruhan arsitektur pada penelitian ini diuji dengan melakukan end-to-end testing. Hasil pengujian menunjukkan bahwa keseluruhan komponen sistem aplikasi Mahoni terhubung dengan baik dalam memenuhi kebutuhan pengguna. Komponen arsitektur event-driven terbukti dapat mengatasi data stream dengan throughput tinggi dan bersifat loosely-coupled sehingga integrasi komponen baru pada sistem lebih mudah. Komponen arsitektur big data juga terbukti dapat mengatasi pertumbuhan data dengan melakukan scaling sehingga menghasilkan sistem yang reliable.

The high number of motorized vehicles in Indonesia is causing air quality issues. To combat this problem, the Mahoni application introduces a smart city concept. It employs a microservice architecture, offering features such as air quality monitoring, travel assistance, and point redemption for coupons according to user needs. Event-driven architecture is utilized for real-time data collection from air sensors and user interactions. Message broker is used to get high throughput and facilitate integration with big data components that require data streams to perform stream processing and real-time analytics through change data capture. Stream data is processed into the required output such as data visualization using dashboards. To achieve this, Kappa architecture is implemented to build a scalable and reliable big data architecture. The connectedness of the implementation of the entire architecture in this study was tested by conducting end-to-end testing. The results of the test show that all components of the Mahoni application system are well connected in meeting user needs. The event-driven architecture component is proven to cope with high-throughput data streams and is loosely-coupled, allowing easy integration of new components. The big data architecture component is also proven to accommodate data growth by scaling, ensuring a reliable system."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Natasya Zahra
"Tingginya jumlah kendaraan bermotor di Indonesia memiliki dampak kepada kualitas udara. Aplikasi Mahoni merupakan upaya solusi dari permasalahan tersebut dengan membawa konsep kota cerdas. Penulis melakukan pengembangan arsitektur microservice yang melayani fitur pada aplikasi Mahoni yaitu servis kualitas udara, perjalanan, dan penukaran poin menjadi kupon sesuai dengan kebutuhan pengguna. Aplikasi Mahoni dikembangkan dengan menggunakan arsitektur event-driven agar dapat mencatat beragam data yang berasal dari sensor udara dan aktivitas pengguna secara real-time. Kafka digunakan sebagai message broker untuk mendapatkan throughput yang tinggi dan mempermudah integrasi dengan komponen big data yang memerlukan data stream untuk melakukan stream processing dan real-time analytics melalui change data capture dengan bantuan Debezium dan Kafka Connect. Data stream diolah menjadi keluaran yang dibutuhkan seperti visualisasi data menggunakan dashboard. Untuk mencapai hal tersebut, arsitektur Kappa diimplementasikan untuk membangun arsitektur big data yang sederhana, scalable, dan reliable. Arsitektur big data pada penelitian ini terdiri dari beberapa komponen yaitu Flink, Cassandra, InfluxDB, dan Grafana. Keterhubungan implementasi keseluruhan arsitektur pada penelitian ini diuji dengan melakukan end-to-end testing. Hasil dari pengujian tersebut menunjukkan bahwa keseluruhan komponen sistem aplikasi Mahoni terhubung dengan baik dalam memenuhi kebutuhan pengguna. Komponen arsitektur event-driven juga dibuktikan dapat mengatasi data stream dengan throughput tinggi dan bersifat loosely-coupled sehingga integrasi komponen baru pada sistem lebih mudah. Komponen arsitektur big data juga dibuktikan dapat mengatasi pertumbuhan data dengan melakukan scaling pada Flink sehingga menghasilkan sistem yang reliable.

The high number of motorized vehicles in Indonesia has an impact on air quality. Mahoni application is an attempt to solve the problem by bringing the concept of smart city. The author develops a microservice architecture that serves features in the Mahoni application, namely air quality services, travel, and redemption of points into coupons according to user needs. Mahoni application is developed using event-driven architecture in order to record various data from air sensors and user activities in real-time. Kafka is used as a message broker to get high throughput and facilitate integration with big data components that require data streams to perform stream processing and real-time analytics through change data capture with the help of Debezium and Kafka Connect. Stream data is processed into the required output such as data visualization using dashboards. To achieve this, Kappa architecture is implemented to build a simple, scalable, and reliable big data architecture. The big data architecture in this research consists of several components, namely Flink, Cassandra, InfluxDB, and Grafana. The connectedness of the implementation of the entire architecture in this study was tested by conducting end-to-end testing. The results of the test show that all components of the Mahoni application system are well connected in meeting user needs. The event-driven architecture component is also proven to be able to cope with high-throughput data streams and is loosely-coupled so that the integration of new components in the system is easier. The big data architecture component is also proven to be able to cope with data growth by scaling Flink to produce a reliable system."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Novialdi Ashari
"Perkembangan pesat teknologi menyebabkan pertumbuhan pengguna perangkat mobile
semakin meningkat. Hal tersebut mendorong para pengembang aplikasi untuk
mengembangkan berbagai aplikasi. Aplikasi Learn Quran Tajwid merupakan aplikasi
yang diperuntukkan bagi pengguna untuk belajar dan memahami bacaan al-quran lebih
detail dengan audio yang tepat dalam melafadzkan al-quran dan pengguna dapat
mempraktekkan bacaan dengan koreksi dari aplikasi. Pendapatan Learn Quran Tajwid
bersumber pada layanan berlangganan dan iklan. Sumber utamanya pada pendapatan
layanan paket berlangganan khususnya di Google Play Store namun sumber pendapatan
utama tersebut terus mengalami penurunan pertumbuhan bulanan dari tahun sebelumnya.
Target peningkatan pertumbuhan pendapatan bulanan Aplikasi Learn Quran Tajwid di
Google Play Store dari tahun sebelumnya (y-o-y) tidak tercapai. Oleh sebab itu, dilakukan
analisis akar masalah dan didapatkan masalah utamanya adalah kepuasaan pelanggan
menurun. Tujuan penelitian ini adalah melihat bagaimana pandangan pengguna Aplikasi
Learn Quran Tajwid di Google Play Store dengan melakukan analisis sentimen dan
pemodelan topik. Data ulasan yang digunakan berjumlah 5100 ulasan yang didapatkan
dengan melakukan scraping dari ulasan pengguna aplikasi Learn Quran Tajwid di Google
Play Store dengan rincian 3026 ulasan sebagai data latih. Selanjutnya data latih
dianotasikan manual untuk menentukan sentimen positif atau negatif kemudian dilakukan
preprocessing dan representasi teks menggunakan TF-IDF. Penelitian ini menggunakan
algoritma NB, SVM, XGBoost, CNN, LSTM dan BERT untuk klasifikasi sentimen. Hasil
eksperimen menunjukkan bahwa algoritma klasifikasi dengan kinerja terbaik adalah
algoritma BERT dengan akurasi 96%, diikuti SVM imbalanced class dengan akurasi
95,2% serta SVM-smote dan LSTM dengan akurasi 94,8%. Sementara itu, algoritma
pemodelan topik yang digunakan adalah LDA. Hasil pemodelan topik menggunakan
algoritma LDA untuk sentimen positif dan negatif. kesimpulan topik pada sentimen
positif yakni pengguna merasa aplikasi sangat bagus dan memberikan manfaat yang
besar, serta mudah digunakan Sedangkan dari topik yang muncul pada sentimen negatif
didapatkan kesimpulan yakni pengguna merasa iklan yang muncul sangat mengganggu
dan mengurangi pengalaman pengguna walaupun pengguna merasa aplikasi bagus dan
bermanfaat namun karena terdapat iklan yang sangat mengganggu berpengaruh terhadap
kepuasaan pengguna sehingga memberikan rating rendah.

The rapid development of technology has led to an increasing growth in mobile device
users. This has driven application developers to create various apps. The Learn Quran
Tajwid app is designed for users to learn and understand the recitation of the Quran in
more detail, with accurate audio pronunciation. Users can practice their recitation and
receive corrections from the app. The revenue for Learn Quran Tajwid comes from
subscription services and advertisements. The main source of revenue is the subscription
packages, particularly on the Google Play Store. However, the main revenue source has
been experiencing a decline in monthly growth compared to the previous year. The target
of increasing monthly revenue growth for the Learn Quran Tajwid app on the Google
Play Store from the previous year (year-over-year) was not achieved. Therefore, an
analysis of the root cause was conducted, and it was found that customer satisfaction has
decreased. This research aims to examine the users' perspectives of the Learn Quran
Tajwid app on the Google Play Store through sentiment analysis and topic modelling. A
total of 5100 app reviews were used for the analysis, obtained by scraping user reviews
of the Learn Quran Tajwid app from the Google Play Store. Out of these, 3026 reviews
were used as training data. The training data was manually annotated to determine
positive or negative sentiment, and then pre-processing and text representation using TF
IDF were performed. This study used the NB, SVM, XGBoost, CNN, LSTM, and BERT
algorithms for sentiment classification. The experimental results showed that the BERT
algorithm performed the best with an accuracy of 96%, followed by SVM imbalance class
with 95.2% accuracy, and SVM-SMOTE and LSTM with 94.8% accuracy. As for the
topic modelling algorithm used, it was LDA. The topic modelling results using the LDA
algorithm for positive sentiment and negative sentiment. In conclusion, the topics
identified for positive sentiment indicate that users find the app to be excellent and highly
beneficial, as well as easy to use. On the other hand, from the topics identified for negative
sentiment, it can be concluded that users find the ads to be very disruptive and diminish
the user experience. Despite users perceiving the app as good and useful, the presence of
intrusive ads has a significant impact on user satisfaction, resulting in lower ratings.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Cita Pelangi Putri Sulistyoadi
"ABSTRAK
Perusahaan e-marketplace perlu menjaga dan meningkatkan kualitas aplikasi mobile dan layanan melalui evaluasi berdasarkan opini pelanggan untuk mengembangkan perusahan dan memenangkan kompetisi antar perusahaan sejenis. Salah satu bentuk opini pelanggan terdapat di toko penyedia aplikasi, seperti Google Play Store dan App Store. Ulasan online ini dapat dimanfaatkan oleh perusahaan e-marketplace, yaitu dengan melakukan analisis opini pelanggan opinion mining terhadap aplikasi dan layanan e-marketplace berdasarkan aspek pendukungnya. Penelitian ini menggunakan ulasan berbahasa Inggris dan Indonesia yang ada pada Google Play Store dan App Store guna mengetahui penilaian pelanggan terhadap enam perusahan e-marketplace di Indonesia, yaitu BliBli, Bukalapak, Lazada, OLX, Shopee dan Tokopedia. Ulasan berbaasa Inggris diolah berdasarkan prinsip Recursive Neural Tensor Network RNTN dengan dua macam pengolahan yaitu dengan lemmatization dan tanpa lemmatization. Ulasan berbahasa Indonesia diolah berdasarkan dictionary-based approach dengan dua macam pengolahan yaitu dengan stemming dan tanpa stemming. Uji akurasi dari luaran opinion mining menunjukkan bahwa ulasan berbahasa Inggris lebih baik diolah dengan melakukan lemmatization, sedangkan ulasan berbahasa Indonesia lebih baik diolah tanpa melakukan stemming . Hasil penelitian dapat digunakan untuk meningkatkan kualitas aplikasi dan layanan tiap perusahaan e-marketplace kedepannya.

ABSTRACT
E marketplace companies need to maintain and improve the quality of mobile application and services through an evaluation based on customer opinions to grow the company and win competition among similar companies. One form of customer opinion is found in app store stores, such as Google Play Store and App Store. This online review can be utilized by e marketplace company, by conducting customer rsquo s opinion analysis opinion mining of e marketplace application and services based on its supporting aspects. This study use English and Indonesian reviews available on Google Play Store and App Store platforms to determine customer ratings for six e marketplace companies in Indonesia, namely BliBli, Bukalapak, Lazada, OLX, Shopee and Tokopedia. English based reviews are processed based on the principle of Recursive Neural Tensor Network RNTN with two kinds of processing, with lemmatization and without lemmatization. Indonesian language reviews are processed based on dictionary based approach with two kinds of processing, with stemming and without stemming. The accuracy test from the results of the opinion mining shows that the English reviews are better processed with lemmatization, while Indonesian reviews are better processed without stemming. The results of the research can be used to improve applications and services quality of each e marketplace company in the future."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nainggolan, Dicky R.M.
"Data merupakan unsur terpenting dalam setiap penelitian dan pendekatan ilmiah. Metodologi sains data digunakan untuk memilah, memilih dan mempersiapkan sejumlah data untuk diproses dan dianalisis. Teknologi big data mampu mengumpulkan data dengan sangat banyak dari berbagai sumber dengan tujuan untuk mendapatkan informasi dengan visualisasi tren atau menyingkapkan pengetahuan dari suatu peristiwa yang terjadi baik dimasa lalu, sekarang, maupun akan datang dengan kecepatan pemrosesan data sangat tinggi. Analisis prediktif memberikan wawasan analisis lebih dalam dan kemunculan machine learning membawa analisis data ke tingkat yang lebih tinggi dengan bantuan teknologi kecerdasan buatan dalam tahap pemrosesan data mentah. Analisis prediktif dan machine learning menghasilkan laporan berbentuk visual untuk pengambil keputusan dan pemangku kepentingan. Berkenaan dengan keamanan siber, big data menjanjikan kesempatan dalam rangka untuk mencegah dan mendeteksi setiap serangan canggih siber dengan memanfaatkan data keamanan internal dan eksternal."
Bogor: Universitas Pertahanan Indonesia, 2017
345 JPUPI 7:2 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
Ishmah Naqiyya
"Perkembangan teknologi informasi dan internet dalam berbagai sektor kehidupan menyebabkan terjadinya peningkatan pertumbuhan data di dunia. Pertumbuhan data yang berjumlah besar ini memunculkan istilah baru yaitu Big Data. Karakteristik yang membedakan Big Data dengan data konvensional biasa adalah bahwa Big Data memiliki karakteristik volume, velocity, variety, value, dan veracity. Kehadiran Big Data dimanfaatkan oleh berbagai pihak melalui Big Data Analytics, contohnya Pelaku Usaha untuk meningkatkan kegiatan usahanya dalam hal memberikan insight yang lebih luas dan dalam. Namun potensi yang diberikan oleh Big Data ini juga memiliki risiko penggunaan yaitu pelanggaran privasi dan data pribadi seseorang. Risiko ini tercermin dari kasus penyalahgunaan data pribadi Pengguna Facebook oleh Cambridge Analytica yang berkaitan dengan 87 juta data Pengguna. Oleh karena itu perlu diketahui ketentuan perlindungan privasi dan data pribadi di Indonesia dan yang diatur dalam General Data Protection Regulation (GDPR) dan diaplikasikan dalam Big Data Analytics, serta penyelesaian kasus Cambridge Analytica-Facebook. Penelitian ini menggunakan metode yuridis normatif yang bersumber dari studi kepustakaan. Dalam Penelitian ini ditemukan bahwa perlindungan privasi dan data pribadi di Indonesia masih bersifat parsial dan sektoral berbeda dengan GDPR yang telah mengatur secara khusus dalam satu ketentuan. Big Data Analytics juga memiliki beberapa implikasi dengan prinsip perlindungan privasi dan data pribadi yang berlaku. Indonesia disarankan untuk segera mengesahkan ketentuan perlindungan privasi dan data pribadi khusus yang sampai saat ini masih berupa rancangan undang-undang.

The development of information technology and the internet in various sectors of life has led to an increase in data growth in the world. This huge amount of data growth gave rise to a new term, Big Data. The characteristic that distinguishes Big Data from conventional data is that Big Data has the characteristic of volume, velocity, variety, value, and veracity. The presence of Big Data is utilized by various parties through Big Data Analytics, for example for Corporation to incurease their business activities in terms of providing broader and deeper insight. But this potential provided by Big Data also comes with risks, which is violation of one's privacy and personal data. One of the most scandalous case of abuse of personal data is Cambridge Analytica-Facebook relating to 87 millions user data. Therefor it is necessary to know the provisions of privacy and personal data protection in Indonesia and which are regulated in the General Data Protection (GDPR) and how it applied in Big Data Analytics, as well as the settlement of the Cambridge Analytica-Facebook case. This study uses normative juridical methods sourced from library studies. In this study, it was found that the protection of privacy and personal data in Indonesia is still partial and sectoral which is different from GDPR that has specifically regulated in one bill. Big Data Analytics also has several implications with applicable privacy and personal data protection principles. Indonesia is advised to immediately ratify the provisions on protection of privacy and personal data which is now is still in the form of a RUU."
Depok: Fakultas Hukum Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Informasi telah menjadi komoditas berharga yang membawa pada perubahan pada kehidupan manusia. Salah satu perubahan adalah bagaimana manusia memperoleh informasi tersebut dari kepingan data yang sangat banyak. Kepingan data yang banyak tersebut merupakan big data membutuhkan tempat untuk disimpan di organisasi dan di analisa. Perpustakaan memiliki sejarah panjang sebagai tempat penyimpanan, pengorganisasian dan analisa informasi. Artikel ini berusaha memberikan gambaran umum tentang big data dan pengaruhnya terhadap dunia perpustakaan. Big data membawa pengaruh besar dalam dunia perpustakaan khususnya pada aspek layanan perpustakaan, kompetensi pustakawan."
MPMKAP 22:4 (2015)
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>