Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 127790 dokumen yang sesuai dengan query
cover
Iqbal Hadiyan
"PT. Indosat Tbk adalah salah satu perusahaan yang berkembang pada industri telekomunikasi. Namun, PT. Indosat Tbk memiliki permasalahan mengenai customer satisfaction yang cenderung menurun dari tahun ke tahun. Data media sosial, terutama twitter, menawarkan data mengenai opini publik yang sangat padat. Namun data twitter yang masih bersifat unstructured diperlukan proses lebih lanjut untuk dapat menemukan dimensi-dimensi beserta sentimen masyarakat terhadap dimensi tersebut. Latent Dirichlet Allocation (LDA) dengan Generative Statistical modelnya memungkinkan suatu set data pengamatan dapat dijelaskan oleh kelompok yang tidak teramati. Penelitian ini menentukan 30 kelompok kata representatif dari hasil LDA. Hasilnya terdapat 18 dimensi yang paling banyak dibicarakan mengenai Indosat pada linimasa twitter. Dimensidimensi tersebut mewakili 14 dimensi yang sudah ditemukan pada penelitian-penelitian sebelumnya mengenai kepuasan pelanggan pada layanan telekomunikasi, bahkan dengan LDA mendapatkan dimensi lebih detail dan lebih real time. Masing-masing dokumen dalam dimensi tersebut diberi label sentimennya, dan ditentukan akurasinya menggunakan supervised classification, hasilnya adalah 72% akurasi dengan model Naive Bayes Classification. Mengabaikan sentimen netral, sentimen negatif Indosat masih lebih tinggi daripada sentimen positifnya, yaitu dengan 16% sentimen negatif. Persentase negatif tersebut masih didominasi dengan dimensi berkaitan dengan layanan Indosat. Sementara dominasi sentimen positif ada pada dimensi yang berhubungan dengan ketersediaan layanan untuk pengguna.

PT. Indosat Tbk is One of the companies developing in the telecommunications industry. However, PT. Indosat Tbk is very concerned about customer satisfaction which tends to decrease from year to year. Social media media, especially Twitter, offer data about public opinion that is very crowded. However, the twitter data that is still unstructured requires a further process to be able to find the dimensions and sentiments of the community towards that dimension. Latent Dirichlet Allocation (LDA) with the Generative Statistics model allows a monitoring data set to be accessed by unobserved groups. This study determines 30 groups of words that represent the results of the LDA. There are 18 dimensions that are most talked about about Indosat on the Twitter timeline. These dimensions represent the 14 dimensions found in previous studies of customer satisfaction in telecommunications services, even with LDA getting more detailed and more real-time dimensions. Each document in this dimension is labeled sentiment, and its accuracy is determined using a supervised classification, obtained 72% accuracy with the Naive Bayes Classification model. Ignoring the negative sentiment, Indosat's negative sentiment was still higher than the positive sentiment, namely with a 16% negative sentiment. The negative percentage is still a comparison with Indosat services. While the dominance of positive sentiment is in the dimensions associated with service support for users."
2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Asep Rinaldo
"ABSTRAK<>br>
Dalam beberapa tahun terakhir, masalah pengukuran kredibilitas informasi di jaringan sosial mendapat perhatian yang cukup besar terutama di bawah situasi darurat. Hal itu merupakan konsekuensi dari membeludaknya informasi, terlebih ketika semua orang bebas berperan sebagai sumber informasi.Penelitian ini menyoroti buramnya dinding pembatas antara fakta dan hoax di Indonesia, sehingga hal itu menyebabkan banyaknya kasus penyebaran hoax di media. Jika dibiarkan hal tersebut dapat berdampak buruk bagi seorang pribadi ataupun organisasi yang diserang isu hoax. Survei yang dilakukan Intelligence Media Management IMM menyatakan terdapat peningkatan tajam di tahun 2016 dari 1572 menjadi 7311 pemberitaan media. Dan berdasarkan hasil survei yang dilakukan masyarakat telematika mastel Indonesia hampir dari seluruh responden 84,5 menyatakan terganggu dengan maraknya berita hoax yang dapat mengganggu kerukunan masyarakat dan menghambat pembangunan nasional.Menurut Menteri Komunikasi dan Informatika Rudiantara, langkah nyata yang bisa dilakukan adalah menyaring informasi menjadi lebih cepat dan tegas. Untuk itu diperlukan tindakan sehingga penyebaran hoax di media dapat diturunkan. Tujuan dilakukannya penelitian ini adalah untuk mengidentifikasi konten di media sosial merupakan suatu hoax atau tidak pada saat konten tersebut beredar. Metodologi yang digunakan di dalam penelitian ini dimulai dengan mengumpulkan tweets yang terindikasi hoax lalu dilakukan proses pengolahan data dengan membuat suatu model text mining yang dapat memprediksi suatu konten berpotensi hoax atau tidak.Hasil dari penelitian ini yaitu didapatkan sebuah model berbasis pembelajaran sendiri menggunakan algoritma LinearSVC dengan akurasi 91 yang dapat memprediksi apakah suatu tweet merupakan berpotensi hoax atau tidak sehingga membantu dalam menyaring suatu informasi yang diharapkan dapat mengurangi penyebaran hoax di Indonesia.

ABSTRACT<>br>
In recent years, the problem of measuring the credibility of information on the social network received considerable attention, especially under emergency situations. This is the consequence of too many information, especially when everyone is free to act as a source of information.The study highlights the blurring of the dividing wall between fact and hoax in Indonesia, so it causes many cases of spread of hoaxes in the media. If left unchecked it can be bad for a person or organization that attacked the issue of hoaxes. Surveys conducted by Intelligence Media Management IMM said there is a sharp increase in 2016 from 1572 content into 7311 content spread in media. And based on the results of a survey conducted by telematics community Mastel Indonesia almost of all respondents 84.5 declared disturbed by the rise of the hoax news that could disturb social harmony and impede national development.According to the Minister of Communications and Information Rudiantara, concrete steps that can be done is to filter information faster and firmer. It required the action so that the spread of hoax in the media can be derived. The purpose of this research is to identify content in social media is a hoax or not when the content is spreading. The methodology used in this research begins with collecting tweets that indicated hoax and then performed data processing by creating a text mining model that can predict a potentially hoax content or not.The result of this research is a machine learning model using LinearSVC algorithm with 91 accuracy which can predict whether tweet potentially hoax or not, thus helping the filtering of information expected to reduce the spread of hoax in Indonesia."
2017
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Ardian Wahyu Yusufi
"Penerapan Teknologi Informasi dan Komunikasi (TIK) untuk meningkatkan keunggulan kompetitif.tidak hanya dimanfaatkan oleh sektor industri, namun juga sektor pemerintahan. Pemerintah Indonesia sendiri di dalam kaitannya dengan pemanfaatan TIK, telah membangun suatu sistem yang memungkinkan masyarakat untuk melaporkan keluhan dan aspirasinya melalui sistem LAPOR!. Sistem LAPOR! ciptaan pemerintah ini ternyata ditanggapi dengan antusias oleh masyarakat, terbukti dengan banyaknya laporan yang masuk ke pemerintah. Guna membantu kinerja pemerintah, dilakukan penelitian untuk menganalisis data tekstual laporan masyarakat dengan text mining untuk kemudian dilakukan disposisi otomatis ke dalam dua kategori utama LAPOR! yaitu topik dan instansi terkait. Disposisi otomatis dilakukan menggunakan teknik problem transformation pada multilabel classification melalui algoritma klasifikasi support vector machine dan naïve bayes. Hasil penelitian menunjukkan bahwa disposisi otomatis dapat diterapkan ke dalam sistem LAPOR! dan dapat meningkatkan kinerja disposisi laporan. Algoritma yang menghasilkan performa terbaik di dalam penerapannya adalah algoritma support vector machine

The application of Information Technology and Communication (ICT) to escalate the competitive advantage is not only used in the industrial sector, but also in the government as well. The government of the Republic of Indonesia itsef, in the use of ICT, has built a system that enable its citizen to report their grievance and aspiration through LAPOR! system. This system turned out to be accepted with great enthusiasm by the public, as evidenced by the many reports to the government. In order to support the government’s performance, research is conducted to analyze the textual data using text mining, for later automatic disposition into two groups of LAPOR!'s category which is topik and instansi terkait. disposition is done using problem transformation technique in multilabel classification through support vector machine and naïve bayes classification algorithm. The result showed that automatic disposition can be applied into LAPOR! system and improves the report disposition’s performance. Algorithm that produces the best performance in the application is support vector machine. "
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Rangga Kharisma Putra
"ABSTRAK
Tren belanja yang terus meningkat mendorong tumbuhnya bisnis e-commerce di Indonesia yang salah satunya adalah suatu perusahaan e-commerce di Indonesia. Salah satu peran penting untuk mendukung bisnis e-commerce adalah kategorisasi produk yang baik. Kategorisasi produk yang baik akan membuat pencarian produk sesuai dengan kebutuhan dari pelanggan. Hal ini berdampak baik pada tingkat penjualan, pengalaman pengguna, maupun pengelolaan produk di sisi internal perusahaan. Akan tetapi, terdapat temuan kesalahan kategori yang penyebab utamanya adalah proses kategorisasi yang masih bersifat manual, berulang, dan massive.
Penelitian ini bertujuan untuk membantu menyelesaikan permasalahan tersebut dengan membuat suatu model yang mampu melakukan klasifikasi produk secara otomatis. Data yang digunakan adalah judul produk, sedangkan untuk label adalah kategori dari setiap produk. Penelitian ini melakukan percobaan terhadap dua representasi yaitu bag-of-words (BoW) dan TF-IDF. Selain itu, penelitian ini menggunakan algoritma naïve bayes dan SVM dalam percobaannya.
Hasil dari penelitian ini didapatkan model yang mampu melakukan klasifikasi produk salah satu perusahaan e-commerce secara baik. Kombinasi BoW dan SVM mampu menghasilkan model performa yang terbaik dengan nilai akurasi 96.40% dan F-measure 95.90%. Selain itu dari penelitian ini didapatkan hasil representasi BoW memberikan performa yang lebih baik dibandingkan dengan TF-IDF.

ABSTRACT
The increasing shopping trend encourages the growth of e-commerce businesses in Indonesia, one of which is e-commerce company in Indonesia. On of the important role to support e-commerce business is well-managed product categorization. Good product categorization will impact the product search according to the customer needs. This will affect the level of sales, user experience, and product management in the internal side of the company. However, some errors were found in the product category, the main causes are the manual categorization, repetitive, and massive process.
This study is aimed to solve the problem by making a model that able to classify products automatically. The data that used in this study is the product title, while the label is the category of each product. This study conducted experiments on two representations; bag-of-words (BoW) and TF-IDF. In addition, this study is using naïve bayes and SVM algorithms in the experiment.
This study resulted a model that able to classify one of e-commerce company products properly. The combination of BoW and SVM is able to produce the best performance model with an accuracy value of 96.40% and F-measure 95.90%. On the other hand, the results of the BoW representation provided the better performance than the TF-IDF."
2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Satria Agung
"Investasi berbasis Crowdfunding merupakan Platform yang mengembangkan berbagai macam keunggulan yang mereka miliki untuk memikat masyarakat agar mau melakukan investasi digital, seperti menyediakan fitur berbagai aneka ragam instrumen investasi dan memberikan kemudahan seperti menawarkan biaya minimum untuk melakukan investasi sebagai modal awal. Penelitian ini bertujuan untuk mengetahui dan menganalisis ulasan pada aplikasi Crowdfunding Land X dan Santara dengan menggunakan metode Text Mining yang berbasis Sentiment Analysis Data yang digunakan dalam penelitian ini merupakan data sekunder yang didapat dengan cara mengambil data yang berupa text review pada aplikasi Crowdfunding Land X dan Santara. Data review yang berhasil diambil untuk aplikasi Santara sebesar 14.991 review, dan data pada aplikasi Land X, data yang berhasil berjumlah 2.241 review. Alat analisis yang digunakan dalam penelitian ini adalah software R dengan metode Text Mining berbasis Sentiment Analysis. Dengan menggunakan Text Mining berbasis Sentiment Analysis, dapat menjadi salah satu indicator analisis untuk melihat pandangan pengguna aplikasi terhadap aplikasi Land X dan Santara.

Crowdfunding-based investments are platforms that develop many various advantages to entice the public to make digital investments, such as providing features for a wide variety of investment instruments and giving conveniences such as offering minimum fees for investing as initial capital. This study aims to find out and analyze reviews on Crowdfunding Land X and Santara applications using the Sentiment Analysisbased Text Mining method. The data used in this study is secondary data obtained by taking data in the form of text reviews on the Land X and Santara Crowdfunding applications. The successful review data was taken for the Santara application amounted to 14,991 reviews, and the data on the Land X application, the successful data amounted to 2,241 reviews. . The analytical tool used in this study is R software with the Text Mining method based on Sentiment Analysis. By using Text Mining based on Sentiment Analysis, it can be an indicator of analysis to see the views of application users on Land X and Santara applications."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Indra Suyitno
"Persaingan dalam dunia bisnis khususnya Industri Telekomunikasi semakin ketat membuat para pelaku harus memikirkan strategi-strategi atau terobosan yang dapat menjamin keberlangsungan bisnis mereka. Kepuasan pelanggan merupakan salah satu faktor yang sangat perlu diperhatikan untuk menjaga pelanggan agar tetap setia pada produk atau layanan yang ditawarkan. Dalam Industri Telekomunikasi data billing dan data kinerja Network dapat dikatakan sebagai data produksi yang sangat penting, bahkan merupakan asset yang berharga di dalam pengelolaan Industri Telekomunikasi. Hal ini menciptakan sebuah kebutuhan akan adanya teknologi yang dapat memanfaatkannya untuk menggali pengetahuan-pengetahuan baru, yang dapat membantu dalam perencanaan strategi bisnis di masa depan. Dalam hal ini teknologi data mining merupakan salah satu solusi yang dapat diterapkan.
Dalam penelitian ini akan dibahas Implementasi Data Mining dan Data Warehouse untuk Menemukan Pola Pemakaian Layanan pada Industri Telekomunikasi. Model data mining meng gunakan association rules algoritma apriori. Association rules yang dihasilkan yang dapat diinterpetasikan menjadi pengetahuan baru mengenai karakteristik obyek produk atau layanan berbasis wireline salah satu operator telekomunikasi. Pengetahuan baru nantinya dapat digunakan sebagai bahan analisis dalam menentukan rencana kebijakan strategis di masa yang akan datang dalam rangka meningkatkan kinerja layanan agar keberadaan pelanggan dapat dipertahankan dan ditingkatkan.

Competition on business industry of telecommunication is very tighten. Consequently strategy and new idea should be thought by corporate executives, so that their business can be successful. Customer satisfaction is ones of important factor that must be noticed in order to customer will have loyality using their product. Data of billing and network performance are very important datas in the industry of telecommunication, even one valueable asset in business and management of telecommunication. Be related to that matter has used technology to explore new knowledge to help their business strategy planning in the future. Technology of data mining is one of the solution can be applied.
This research will explore Implementation of data mining for finding association rules with apriori algorithm, inside of industry of telecommunication. Association rules can be interpreted to be new knowledge, its about either characteristic of wireline product of operator telecommunication services. Better, the new knowledge can be used to analize of matter to increase performance services so that customer still believe and use their product.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
T-Pdf
UI - Tesis Open  Universitas Indonesia Library
cover
Rino Supriadi Putra
"ABSTRAK

Pariwisata Indonesia adalah salah satu penyumbang terbesar devisa negara. Pada 2015 devisa yang dihasilkan sektor pariwisata adalah sebesar $ 12,23 miliar dan diproyeksikan bahwa pada tahun 2020 akan memberikan kontribusi devisa negara sebesar $ 20 miliar. Kemajuan teknologi secara fundamental telah mengubah cara informasi diproduksi dan digunakan untuk banyak hal termasuk di sektor pariwisata. Dalam industri pariwisata, pengalaman pelanggan penting untuk pengembangan dan reputasi industri. Diperlukan pendekatan baru untuk mengukur tingkat kepuasan pelanggan dan persepsi wisatawan melalui analisis sentimen. Dalam penelitian ini permasalahan yang menjadi perhatian adalah bagaimana memanfaatkan analisis sentimen untuk menentukan persepsi wisatawan mengenai 3A (atraksi, amenitas, dan aksesibilitas) di destinasi wisata dan mengukur korelasi antara persepsi wisatawan dengan tingkat pertumbuhan wisatawan, menggunakan metode text mining NLP (Natural Language Processing) untuk mengembangkan strategi peningkatan kunjungan wisatawan dan pengembangan destinasi wisata. Hasil dari penelitian yang dilakukan didapatkan hasil terdapat korelasi negatif yang kuat antara sentimen negatif dengan tingkat pertumbuhan kunjungan wisatawan. Tingkat pertumbuhan wisatawan akan menurun ketika sentimen negatif dari wisatawan meningkat. Penurunan tingkat pertumbuhan wisatawan berdampak pada potensi hilangnya pendapatan negara. Analisis sentimen dapat memberikan gambaran persepsi wisatawan secara lengkap terkait aspek amenitas, aksesibilitas, dan atraksi di destinasi pariwisata.


ABSTRACT


Indonesian tourism is one of the biggest contributors to the countrys foreign exchange. In 2015 the foreign exchange generated by the tourism sector was $ 12:23 billion and it is projected that in 2020 will Contribute to the countrys foreign exchange of $ 20 billion. Technological advances have fundamentally changed the way information is produced and used for many things Including in the tourism sector. In the tourism industry, customer experience is important for the development and reputation of the industry. A new approach is needed to measure customer satisfaction and tourist perceptions through sentiment analysis. In this study the goal is how to use sentiment analysis to Determine the perceptions of tourists regarding 3A (attractions, amenities and accessibility) in tourist destinations and measure the correlation between perceptions with tourist tourist growth rates, using the NLP (Natural Language Processing) text mining method to develop strategies for increasing tourist visits and developing tourist destinations. The results of the research Showed that there was a strong negative correlation between negative sentiment and the level of tourist tourist growth. The level of tourist growth when the negative sentiment will Decrease from tourists increases. Tourist Declining growth rates have an impact on the potential loss of state income. Sentiment analysis can provide a complete description of tourist perceptions regarding aspects of amenities, accessibility, and Attractions in tourism destinations. using the NLP (Natural Language Processing) text mining method to develop strategies for increasing tourist visits and developing tourist destinations. The results of the research Showed that there was a strong negative correlation between negative sentiment and the level of tourist tourist growth. The level of tourist growth when the negative sentiment will Decrease from tourists increases. Tourist Declining growth rates have an impact on the potential loss of state income. Sentiment analysis can provide a complete description of tourist perceptions regarding aspects of amenities, accessibility, and Attractions in tourism destinations. using the NLP (Natural Language Processing) text mining method to develop strategies for increasing tourist visits and developing tourist destinations. The results of the research Showed that there was a strong negative correlation between negative sentiment and the level of tourist tourist growth. The level of tourist growth when the negative sentiment will Decrease from tourists increases. Tourist Declining growth rates have an impact on the potential loss of state income. Sentiment analysis can provide a complete description of tourist perceptions regarding aspects of amenities, accessibility, and Attractions in tourism destinations. The results of the research Showed that there was a strong negative correlation between negative sentiment and the level of tourist tourist growth. The level of tourist growth when the negative sentiment will Decrease from tourists increases. Tourist Declining growth rates have an impact on the potential loss of state income. Sentiment analysis can provide a complete description of tourist perceptions regarding aspects of amenities, accessibility, and Attractions in tourism destinations. The results of the research Showed that there was a strong negative correlation between negative sentiment and the level of tourist tourist growth. The level of tourist growth when the negative sentiment will Decrease from tourists increases. Tourist Declining growth rates have an impact on the potential loss of state income. Sentiment analysis can provide a complete description of tourist perceptions regarding aspects of amenities, accessibility, and Attractions in tourism destinations.

 

"
2020
T55380
UI - Tesis Membership  Universitas Indonesia Library
cover
Kukuh Lolana
"ABSTRACT
Pelayanan publik berperan penting untuk meningkatkan kesejahteraan masyarakat. Kepolisian Republik Indonesia merupakan lembaga pelayanan publik yang memiliki peranan penting di masyarakat. Namun, penilaian kinerja Polri yang berhubungan langsung dengan masyarakat masih rendah dan perlu ditingkatkan. Peningkatan kinerja layanan Polri dilakukan dengan memahami aduan dan masukan dari masyarakat. Aduan merupakan informasi penting untuk penyedia layanan untuk mengetahui arah perbaikan dan pengembangan layanan ke depannya. Perkembangan teknologi membuat sistem penyampaian pengaduan dapat disampaikan secara online sehingga lebih mudah. Kemudahan ini sejalan dengan banyaknya jumlah aduan yang disampaikan masyarakat kepada Polri. Aduan masyarakat merupakan data teks yang tidak terstruktur dengan penggunaan kosa kata yang bervariasi. Maka dari itu, pendekatan text miningpenting untuk dilakukan. Penelitian ini bertujuan untuk mengklasifikasi dan melakukan clustering dari aduan masyarakat kepada Polri untuk topik permasalahan yang sering disampaikan masyarakat. Untuk klasifikasi, algoritme yang digunakan adalah Support Vector Machine SVM dan Random Forest Classifier RFC karena kedua algoritme bekerja dengan baik untuk mengklasifikasi data teks dalam jumlah besar. Hasilnya algoritme RFC bekerja lebih baik pada kasus ini dengan akurasi 72 . Untuk clustering, algoritme yang digunakan adalah Self-Organizing Maps. Hasil penelitian menunjukkan aduan terbanyak masyarakat terdapat di Kelas Pelayanan Buruk dengan topik yang sering dibahas berkaitan dengan satuan kerja Korps Lalu-Lintas Polri.

ABSTRACT
Public services take a major role to improve the welfare of society. Indonesia National Police is one of public service institution which have an important role. Unfortunately, assessment of Police performance related to the public service quality is still low. Police needs to improvetheirservice quality. For improving the performance, by analyzing inputs and complaints from public. Complaint is an valuable information for service provider in order to know the service improvement and development in the future. Technology advances make the online complaint handling system easy to access. This is allign with the number of public complaints for Police. Public complaints is unstructured text data with varying vocabulary. Hence, this research is using text mining approach. This research aims to classify and cluster the public complaints to Indonesia National Police to get the specific topic of the complaint. Support Vector Machine and Random Forest Classification RFC algorithms are used for classification. RFC works better on this research with 72 accuracy. Self Organizing Maps algorithm is used for clustering. The result is the highest public complaints are in poor service quality class with topics related to National Police rsquo s Traffic Corps."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Faisal M
"Terdapat beberapa media online yang ditutup oleh Kementrian Komunikasi dan Informatika (Kemkominfo) dikarenakan menjual obat aborsi. Hal tersebut karena aborsi merupakan tindakan yang dilarang yang tertulis pada Kitab Undang-Undang Hukum Pidana (KUHP) pada pasal 346. Oleh karena itu, agar situs dari PT XYZ tidak ditutup oleh Kemkominfo, PT XYZ melakukan penanganan terkait peredaran obat aborsi ini yaitu dengan pending system. Namun, pending system hanya mendeteksi judul dari produk dengan menggunakan kata kunci spesifik yang berhubungan dengan obat aborsi yang diinput oleh tim sehingga masih terdapat produk obat aborsi yang lolos beredar karena terdapat produk yang menggunakan kata kunci yang umum dan gaming keyword. Oleh karena itu, penelitian ini membahas terkait penerapan text mining untuk membangun sebuah classification model yang berasal dari korpus obat aborsi yang ada di PT XYZ yang akan digunakan untuk pendeteksian obat aborsi kedepannya yang ada di PT XYZ.
Penelitian ini menggunakan model CRISP-DM untuk siklus hidup data mining. Selain itu, untuk membangun suatu classification model, Penelitian ini melakukan percobaan terhadap dua algoritme diantaranya adalah Naive Bayes dan Support Vector Machine dengan metode k-fold cross validation. Selain itu, penelitian ini menggunakan data harga sebagai fitur tambahan dari model yang dibangun. Untuk penentuan classification yang terbaik dilakukan evaluasi performa dari setiap classification model dengan menggunakan confussion matrix dengan parameter accuracy, recall, precision, f1-measure, dan AUC. Penelitian ini menggunakan beberapa kriteria dalam penghapusan duplikasi data untuk menghindari data bias. Model terbaik yang didapatkan yaitu model SVM dengan fitur harga yang memiliki nilai accuracy 99.82%, f1-score 99.79%, dan AUC 99.98%. Hasil dari model yang telah dianalisis pada penelitian ini dapat digunakan oleh PT XYZ untuk mendeteksi produk obat aborsi agar mengurangi kesempatan penjual menjual produk obat aborsi yang di PT XYZ. Selain itu, penelitian ini dapat memberikan gambaran untuk penelitian akademis berikutnya terkait keseluruhan proses dari text mining.

There are several online media that were closed by the Ministry of Communication and Information (Kemkominfo) due to selling abortion drugs. This is because abortion is a prohibited act which is written in the Criminal Code (KUHP) in article 346. Therefore, in order PT XYZ is not closed by the Ministry of Communication and Information, PT XYZ create system that try to handle the circulation of abortion drugs, namely pending system. However, the pending system only detects the title of the product by using specific keywords related to abortion drugs that are inputted by the team so that there are still abortion drug products that pass through the system because there are products that use general keywords and gaming keywords. Therefore, this study discusses the application of text mining to build a classification model derived from the abortion drug corpus at PT XYZ which will be used for the detection of abortion drugs in the future at PT XYZ.
This study uses the CRISP-DM model for the data mining life cycle. In addition, to build a classification model, this study conducted experiments on two algorithms including Naive Bayes and Support Vector Machine with the k-fold cross validation method. In addition, this study uses price data as an additional feature of the built model. To determine the best classification, the performance evaluation of each classification model is carried out using a confusion matrix with parameters accuracy, recall, precision, f1-measure, and AUC. This study uses several criteria in eliminating duplication of data to avoid data bias. The best model obtained is the SVM model with a price feature that has an accuracy value of 99.82%, f1-score 99.79%, and AUC 99.98%. The results of the model that had been analyzed in this study can be used by PT XYZ to detect abortion drug products in order to reduce the chance for sellers to sell abortion drug products at PT XYZ. In addition, this research can provide an overview for the next academic research related to text mining process.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Puteri Prameswari
"Ulasan hotel online di era modern ini memiliki peran besar mengingat hotel merupakan faktor penentu daya saing sebuah daerah wisata, namun pemanfaatannya masih jarang ditemukan. Berkaitan dengan rencana pemerintah untuk meningkatkan kunjungan wisatawan ke Indonesia, penelitian ini mengaplikasikan text mining terhadap ulasan hotel online untuk menemukan pengetahuan yang bermanfaat dalam membangun sektor perhotelan sebagai bagian integral dalam industri pariwisata. Teknik klasifikasi teks digunakan untuk mendapatkan informasi sentimen yang terkandung dalam kalimat ulasan melalui analisis sentimen, serta teknik klasterisasi pada text summarization untuk menemukan kalimat representatif yang mampu menggambarkan keseluruhan isi ulasan. Percobaan dengan ulasan hotel di Labuan Bajo, Lombok, dan Bali menghasilkan luaran yang memuaskan, di mana akurasi model penggolong klasifikasi sebesar 78 dan Davies-Bouldin Index DBI sebesar 0.071 untuk proses klasterisasi. Luaran penelitian ini diharapkan mampu menggambarkan kondisi hotel di daerah wisata unggulan Indonesia sehingga dapat berkontribusi dalam peningkatan kualitas sektor perhotelan sebagai penunjang industri pariwisata di Indonesia.

In this modern era, online hotel reviews have a big role considering the hotel is one the aspects in determining the competitiveness in the tourist area, but its implementation is still rare. Regarding the government 39 s plan to increase tourist arrivals to Indonesia, this research utilized text mining towards online hotel reviews to find useful knowledge in building the hospitality sector as an integral part of the tourism industry. Text classification technique was used to obtain sentiment information contained in review sentences through sentiment analysis, as well as clustering technique as a part of text summarization to find representative sentences that are able to describe the entire contents of the review. Experiments with hotel reviews in Labuan Bajo, Lombok and Bali generated surprising outcomes, where the accuracy of classification model reaches 78 and the Davies Bouldin Index DBI of clustering algorithm strikes 0.071. The output of this research is expected to be able to describe the condition of the hotel in tourist area based on the different level of tourism development so that it can contribute to improving the quality of the hotel industry as well as supporting the tourism industry in Indonesia.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T48159
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>