Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 154559 dokumen yang sesuai dengan query
cover
Nivia Nurbayani
"ABSTRAK
Penelitian ini bertujuan untuk menganalisis unsur makro dan mikro dari sebuah teks yang berjudul IMAN (Vereinigung Acehnesischer Studenten in Deutschland) yang ada pada majalah NADI (Nachrichten für Alumni über Deutschland und Indonesien). Metode yang digunakan dalam penelitian ini adalah metode kualitatif dengan bentuk kajian pustaka. Teks ini akan dianalisis menggunakan teori dari Nord (2010) tentang sistematika analisis teks menggunakan skema W-Frage. Berdasarkan hasil penelitian, diketahui bahwa pada teks sumber ataupun teks sasaran terdapat semua unsur makro dan mikro. Di samping itu pada teks sasaran juga ditemukan kesalahan seperti kesalahan penulisan dan ketidaksesuaian kaidah bahasa sasaran.

ABSTRACT
This study aims to analyze micro and macro elements of a text with the title IMAN (Vereinigung Acehnesischer Studenten in Deutschland) in NADI (Nachrichten für Alumni über Deutschland und Indonesien) magazine. The method that used in this study is qualitative method with literature review. The text will be analyzed by using the theory of Nord (2010), about the systematics text analysis by using W-Frage scheme. Based on the result, it is known that both original text and the translation text have all the elements of micro and macro. Furthermore, several mistakes also found in writting and mismatch of translation."
Fakultas Ilmu Pengetahuan dan Budaya Universitas Indonesia, 2019
MK-Pdf
UI - Makalah dan Kertas Kerja  Universitas Indonesia Library
cover
Puteri Prameswari
"Ulasan hotel online di era modern ini memiliki peran besar mengingat hotel merupakan faktor penentu daya saing sebuah daerah wisata, namun pemanfaatannya masih jarang ditemukan. Berkaitan dengan rencana pemerintah untuk meningkatkan kunjungan wisatawan ke Indonesia, penelitian ini mengaplikasikan text mining terhadap ulasan hotel online untuk menemukan pengetahuan yang bermanfaat dalam membangun sektor perhotelan sebagai bagian integral dalam industri pariwisata. Teknik klasifikasi teks digunakan untuk mendapatkan informasi sentimen yang terkandung dalam kalimat ulasan melalui analisis sentimen, serta teknik klasterisasi pada text summarization untuk menemukan kalimat representatif yang mampu menggambarkan keseluruhan isi ulasan. Percobaan dengan ulasan hotel di Labuan Bajo, Lombok, dan Bali menghasilkan luaran yang memuaskan, di mana akurasi model penggolong klasifikasi sebesar 78 dan Davies-Bouldin Index DBI sebesar 0.071 untuk proses klasterisasi. Luaran penelitian ini diharapkan mampu menggambarkan kondisi hotel di daerah wisata unggulan Indonesia sehingga dapat berkontribusi dalam peningkatan kualitas sektor perhotelan sebagai penunjang industri pariwisata di Indonesia.

In this modern era, online hotel reviews have a big role considering the hotel is one the aspects in determining the competitiveness in the tourist area, but its implementation is still rare. Regarding the government 39 s plan to increase tourist arrivals to Indonesia, this research utilized text mining towards online hotel reviews to find useful knowledge in building the hospitality sector as an integral part of the tourism industry. Text classification technique was used to obtain sentiment information contained in review sentences through sentiment analysis, as well as clustering technique as a part of text summarization to find representative sentences that are able to describe the entire contents of the review. Experiments with hotel reviews in Labuan Bajo, Lombok and Bali generated surprising outcomes, where the accuracy of classification model reaches 78 and the Davies Bouldin Index DBI of clustering algorithm strikes 0.071. The output of this research is expected to be able to describe the condition of the hotel in tourist area based on the different level of tourism development so that it can contribute to improving the quality of the hotel industry as well as supporting the tourism industry in Indonesia.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T48159
UI - Tesis Membership  Universitas Indonesia Library
cover
Ilham Aulia Malik
"[ABSTRAK
Aplikasi Fajr merupakan aplikasi mobile yang memiliki konten islami dengan
fitur utama yaitu Fajr Cards. Namun, Fajr Cards belum mampu menarik
perhatian pengguna dengan minimnya jumlah pengguna fitur ini. Fajr Cards
sebagai fitur yang berbasiskan kepada konten dapat ditingkatkan dengan
memberikan konten yang relevan dengan pengguna. Twitter sebagai media sosial
memiliki data real-time dan jumlah yang banyak sehingga dapat menjadi sumber
data aktual untuk dianalisa. Data Twitter dapat dianalisa dengan menggunakan
text mining. Salah satunya yaitu text classification atau klasifikasi teks Tujuan
penelitian ini adalah untuk menentukan metode klasifikasi apa yang terbaik untuk klasifikasi tema konten Fajr Cards. Metodologi yang digunakan menggunakan tahapan preprocess Text Mining dan
penggunaan metode Text Mining yaitu Text Classification. Hasil yang diharapkan adalah gambaran bagaimana data Twitter diproses untuk proses klasifikasi dan metode klasifikasi apa yang terbaik untuk klasifikasi tema konten Fajr Cards.

ABSTRACT
Fajr application is a mobile application that contains Islamic contents for moslem daily life. To get more users, the developers create a main feature called Fajr Cards. But, Fajr Cards has not been able to attract users. It is based on the minimum of users that using Fajr Cards. Fajr Cards as a feature based on contents can be improved by adding more content that have relevance value to users. Twitter as microblog social media have real time and a lot of data. Those data can be used as an actual source data for analyze. Text mining such as text classification will be used to analyze the data. The purpose of this research is to get what classification method that suited best for this classification. Methodology that used in this research is Text Mining including preprocess and Text Classification. The expected results is to know what classification method that suited best for Fajr Card?s theme classification.;Fajr application is a mobile application that contains Islamic contents for moslem
daily life. To get more users, the developers create a main feature called Fajr
Cards. But, Fajr Cards has not been able to attract users. It is based on the
minimum of users that using Fajr Cards. Fajr Cards as a feature based on contents
can be improved by adding more content that have relevance value to users.
Twitter as microblog social media have real time and a lot of data. Those data can
be used as an actual source data for analyze. Text mining such as text
classification will be used to analyze the data. The purpose of this research is to
get what classification method that suited best for this classification.
Methodology that used in this research is Text Mining including preprocess and
Text Classification. The expected results is to know what classification method that suited best for Fajr Card?s theme classification.;Fajr application is a mobile application that contains Islamic contents for moslem
daily life. To get more users, the developers create a main feature called Fajr
Cards. But, Fajr Cards has not been able to attract users. It is based on the
minimum of users that using Fajr Cards. Fajr Cards as a feature based on contents
can be improved by adding more content that have relevance value to users.
Twitter as microblog social media have real time and a lot of data. Those data can
be used as an actual source data for analyze. Text mining such as text
classification will be used to analyze the data. The purpose of this research is to
get what classification method that suited best for this classification.
Methodology that used in this research is Text Mining including preprocess and
Text Classification. The expected results is to know what classification method that suited best for Fajr Card?s theme classification., Fajr application is a mobile application that contains Islamic contents for moslem
daily life. To get more users, the developers create a main feature called Fajr
Cards. But, Fajr Cards has not been able to attract users. It is based on the
minimum of users that using Fajr Cards. Fajr Cards as a feature based on contents
can be improved by adding more content that have relevance value to users.
Twitter as microblog social media have real time and a lot of data. Those data can
be used as an actual source data for analyze. Text mining such as text
classification will be used to analyze the data. The purpose of this research is to
get what classification method that suited best for this classification.
Methodology that used in this research is Text Mining including preprocess and
Text Classification. The expected results is to know what classification method that suited best for Fajr Card’s theme classification.]"
2015
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Yosia Rimbo Deantama
"ABSTRAK
Pangan merupakan hak asasi manusia yang harus senantiasa terpenuhi oleh masyarakat dengan daya beli yang sesuai dan mempunyai kualitas pangan yang tinggi dan aman. Hal tersebut mendorong kedaulatan pangan suatu negara, yang secara mandiri memenuhi kebutuhan pangan masyarakatnya berdasarkan sistem pangan yang adil bagi seluruh masyarakat. Peraturan Pemerintah Republik Indonesia Nomor 17 Tahun 2015 yang mewajibkan adanya sistem informasi tentang pangan dan gizi dan teori evolusi e-government 3.0. Oleh karena itu salah satu solusi yang mendukung peraturan tersebut dan pendekatan e-government 3.0 adalah dengan pendekatan text mining. Penelitian ini mengolah data dari LAPOR! dan berita daring mengenai kedaulatan pangan untuk mengekstrak informasi dan menemukan pola-pola yang akan menghasilkan informasi tentang kedaulatan pangan di Indonesia sehingga dapat membantu pengambilan keputusan yang berdasar pada data melalui representasi visualisasi berbasis web. Jenis analisis informasi yang digunakan adalah Klasifikasi Dokumen untuk penyaringan dokumen, Named Entitiy Recognition yang digunakan untuk mengetahui entitas lokasi dan komoditas pangan dari data tekstual, dan Topic Modelling untuk menemukan topik dari sekumpulan teks dokumen berita dan aduan LAPOR!. Algoritma yang dipakai dalam penelitian ini adalah Conditional Random Fields dan Conditional Markov Model untuk implementasi Named Entity Recognition. Latent Dirichlet Allocation dan Non-Negative Matrix Factorization untuk implementasi Topic Modelling. Selain itu Naïve Bayes, Support Vector Machine, dan Logistic Regression digunakan untuk klasifikasi dokumen. Sedangkan pemilihan model ini menggunakan Conditional Random Field dengan nilai F1-score pada entitas lokasi sebesar 83.85 dan entitas komoditas pangan sebesar 90.98 yang digunakan pada data berita daring, pada data aduan LAPOR!, entitas lokasi menggunakan Conditional Markov Model dengan nilai F1-Score sebesar 60.35 dan entitas komoditas pangan sebesar 89.74. Pada klasfikasi dokumen, model Support Vector Machine dengan fitur unigram memiliki nilai presisi sebesar 92.00. Pada Topic Modelling, model Non-Negative Matrix Factorization memiliki nilai coherence yang lebih tinggi daripada Latent Direchlete Allocation pada tiga eksperimen dengan dataset yang berbeda. Di samping itu, dilakukan visualisasi tentang kedaulatan pangan berdasarkan pengolahan data tersebut di atas untuk memudahkan pengambilan kebijakan oleh pimpinan seperti Tim Ahli di Kantor Staf Presiden.

ABSTRACT
Food is a human right that must always be fulfilled by the society with the appropriate purchasing power and high and safe food quality. This encourages food sovereignty of a country, which independently meets the food needs of its people based on a food system that is fair to the entire community. Peraturan Pemerintah Republik Indonesia Nomor 17 Tahun 2015 requires an information system on food and nutrition and the theory of e-government 3.0 evolution. Therefore, one solution that supports these regulations and the e-government 3.0 approach is the text mining approach. This research processes data from LAPOR! and online news on food sovereignty to extract information and find patterns that will produce information on food sovereignty in Indonesia so that it can assist decision-making based on data through web-based visualization representation. The type of information analysis used is Document Classification for document filtering, Named Entity Recognition which is used to find out location entities and food commodities from textual data, and Topic Modeling to find topics from a collection of text news documents and complaints LAPOR !. The algorithm used in this study is Conditional Random Fields and Conditional Markov Models for the implementation of Named Entity Recognition. Latent Dirichlet Allocation and Non-Negative Matrix Factorization for the implementation of Topic Modeling. In addition Naïve Bayes, Support Vector Machine, and Logistic Regression are used for document classification. Whereas the selection of this model uses Conditional Random Field with an F1-score value for location entities of 83.85 and a food commodity entity of 90.98 used in online news data. In the LAPOR! Complaint data, the location entity uses Conditional Markov Model with an F1-Score value of 60.35 and food commodity entities amounting to 89.74. In classifying documents, the Support Vector Machine model with unigram features has a precision value of 92.00. In Topic Modeling, the Non-Negative Matrix Factorization model has a higher coherence value than the Latent Direchlete Allocation in three experiments with different datasets. In addition, visualization of food sovereignty is based on the processing of the data above to facilitate policy making by leaders such as the Expert Team at the Kantor Staf Presiden.

"
2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Asep Rinaldo
"ABSTRAK<>br>
Dalam beberapa tahun terakhir, masalah pengukuran kredibilitas informasi di jaringan sosial mendapat perhatian yang cukup besar terutama di bawah situasi darurat. Hal itu merupakan konsekuensi dari membeludaknya informasi, terlebih ketika semua orang bebas berperan sebagai sumber informasi.Penelitian ini menyoroti buramnya dinding pembatas antara fakta dan hoax di Indonesia, sehingga hal itu menyebabkan banyaknya kasus penyebaran hoax di media. Jika dibiarkan hal tersebut dapat berdampak buruk bagi seorang pribadi ataupun organisasi yang diserang isu hoax. Survei yang dilakukan Intelligence Media Management IMM menyatakan terdapat peningkatan tajam di tahun 2016 dari 1572 menjadi 7311 pemberitaan media. Dan berdasarkan hasil survei yang dilakukan masyarakat telematika mastel Indonesia hampir dari seluruh responden 84,5 menyatakan terganggu dengan maraknya berita hoax yang dapat mengganggu kerukunan masyarakat dan menghambat pembangunan nasional.Menurut Menteri Komunikasi dan Informatika Rudiantara, langkah nyata yang bisa dilakukan adalah menyaring informasi menjadi lebih cepat dan tegas. Untuk itu diperlukan tindakan sehingga penyebaran hoax di media dapat diturunkan. Tujuan dilakukannya penelitian ini adalah untuk mengidentifikasi konten di media sosial merupakan suatu hoax atau tidak pada saat konten tersebut beredar. Metodologi yang digunakan di dalam penelitian ini dimulai dengan mengumpulkan tweets yang terindikasi hoax lalu dilakukan proses pengolahan data dengan membuat suatu model text mining yang dapat memprediksi suatu konten berpotensi hoax atau tidak.Hasil dari penelitian ini yaitu didapatkan sebuah model berbasis pembelajaran sendiri menggunakan algoritma LinearSVC dengan akurasi 91 yang dapat memprediksi apakah suatu tweet merupakan berpotensi hoax atau tidak sehingga membantu dalam menyaring suatu informasi yang diharapkan dapat mengurangi penyebaran hoax di Indonesia.

ABSTRACT<>br>
In recent years, the problem of measuring the credibility of information on the social network received considerable attention, especially under emergency situations. This is the consequence of too many information, especially when everyone is free to act as a source of information.The study highlights the blurring of the dividing wall between fact and hoax in Indonesia, so it causes many cases of spread of hoaxes in the media. If left unchecked it can be bad for a person or organization that attacked the issue of hoaxes. Surveys conducted by Intelligence Media Management IMM said there is a sharp increase in 2016 from 1572 content into 7311 content spread in media. And based on the results of a survey conducted by telematics community Mastel Indonesia almost of all respondents 84.5 declared disturbed by the rise of the hoax news that could disturb social harmony and impede national development.According to the Minister of Communications and Information Rudiantara, concrete steps that can be done is to filter information faster and firmer. It required the action so that the spread of hoax in the media can be derived. The purpose of this research is to identify content in social media is a hoax or not when the content is spreading. The methodology used in this research begins with collecting tweets that indicated hoax and then performed data processing by creating a text mining model that can predict a potentially hoax content or not.The result of this research is a machine learning model using LinearSVC algorithm with 91 accuracy which can predict whether tweet potentially hoax or not, thus helping the filtering of information expected to reduce the spread of hoax in Indonesia."
2017
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Sitorus, Clara Fransisca
"ABSTRAK
Dokumen ilmiah memuat ilmu pengetahuan yang dihasilkan dari penelitian. Dokumen-dokumen ini saling terhubung apabila terdapat hubungan antara penelitian yang satu dengan yang lain. Bidang ilmu pengetahuan merupakan bagian penting dalam menganalisis perkembangan ilmu pengetahuan. Domain kajian suatu bidang ilmu pengetahuan dapat dilihat dengan bantuan alat visualisasi. Salah satu bentuk visualisasi adalah pemetaan ilmu. Penelitian ini bertujuan untuk mendapatkan informasi tentang gambaran peta penelitian publikasi internasional Fakultas Teknik UI selama 6 tahun terakhir Januari 2010 ndash; Oktober 2016 yang terindeks Scopus. Pemetaan dilakukan dengan membangun jaringan hubungan antar artikel. Metode pendekatan analisis co-word dilakukan pada subjek penelitian kata kunci atau deskriptor . Data yang diolah diambil dari atribut author keyword dan index keyword publikasi internasional. Berdasarkan kemunculan co-occurence dari pasangan kata, analisis co-word menggambarkan tema penelitian dan menunjukkan hubungan antar tema dari konten berupa teks. Hasil dari penelitian ini adalah pemetaan dan klaster tema publikasi FT UI dan setiap departemen FT UI. Klaster tema publikasi FT UI didominasi oleh tema dari Departemen Teknik Elektro, Teknik Mesin, dan Teknik Metalurgi.

ABSTRACT
Scientific document contains knowledge generated from the research. These documents are connected if there is a link between each research. Science field is an important part in analyzing the development of science. Domain study of a field of science can be seen with the aid of visualization tools. One form of visualization is science mapping. The aim of this research is to achieve up to date information on the map of six years January 2010 ndash October 2016 international publication conducted by the researchers from Fakultas Teknik UI that are indexed by Scopus database. Science mapping is conducted by construct networks of links between articles. Method of co word analysis approach on subjects keywords or descriptor was implemented. Tabulation of data are extracted from the author keyword and index keyword of documents. Based on the co occurrence of pairs of words, co word analysis seeks to extract the themes of science and detect the linkages among these themes directly from the subject content of texts. The results of this study shows the theme map dan clusters in FT UI and each department of FT UI. Publication themes of FT UI are dominated by the theme from Department of Electrical Engineering, Mechanical Engineering, and Metallurgical Engineering."
2016
S66264
UI - Skripsi Membership  Universitas Indonesia Library
cover
Satria Agung
"Investasi berbasis Crowdfunding merupakan Platform yang mengembangkan berbagai macam keunggulan yang mereka miliki untuk memikat masyarakat agar mau melakukan investasi digital, seperti menyediakan fitur berbagai aneka ragam instrumen investasi dan memberikan kemudahan seperti menawarkan biaya minimum untuk melakukan investasi sebagai modal awal. Penelitian ini bertujuan untuk mengetahui dan menganalisis ulasan pada aplikasi Crowdfunding Land X dan Santara dengan menggunakan metode Text Mining yang berbasis Sentiment Analysis Data yang digunakan dalam penelitian ini merupakan data sekunder yang didapat dengan cara mengambil data yang berupa text review pada aplikasi Crowdfunding Land X dan Santara. Data review yang berhasil diambil untuk aplikasi Santara sebesar 14.991 review, dan data pada aplikasi Land X, data yang berhasil berjumlah 2.241 review. Alat analisis yang digunakan dalam penelitian ini adalah software R dengan metode Text Mining berbasis Sentiment Analysis. Dengan menggunakan Text Mining berbasis Sentiment Analysis, dapat menjadi salah satu indicator analisis untuk melihat pandangan pengguna aplikasi terhadap aplikasi Land X dan Santara.

Crowdfunding-based investments are platforms that develop many various advantages to entice the public to make digital investments, such as providing features for a wide variety of investment instruments and giving conveniences such as offering minimum fees for investing as initial capital. This study aims to find out and analyze reviews on Crowdfunding Land X and Santara applications using the Sentiment Analysisbased Text Mining method. The data used in this study is secondary data obtained by taking data in the form of text reviews on the Land X and Santara Crowdfunding applications. The successful review data was taken for the Santara application amounted to 14,991 reviews, and the data on the Land X application, the successful data amounted to 2,241 reviews. . The analytical tool used in this study is R software with the Text Mining method based on Sentiment Analysis. By using Text Mining based on Sentiment Analysis, it can be an indicator of analysis to see the views of application users on Land X and Santara applications."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ardian Wahyu Yusufi
"Penerapan Teknologi Informasi dan Komunikasi (TIK) untuk meningkatkan keunggulan kompetitif.tidak hanya dimanfaatkan oleh sektor industri, namun juga sektor pemerintahan. Pemerintah Indonesia sendiri di dalam kaitannya dengan pemanfaatan TIK, telah membangun suatu sistem yang memungkinkan masyarakat untuk melaporkan keluhan dan aspirasinya melalui sistem LAPOR!. Sistem LAPOR! ciptaan pemerintah ini ternyata ditanggapi dengan antusias oleh masyarakat, terbukti dengan banyaknya laporan yang masuk ke pemerintah. Guna membantu kinerja pemerintah, dilakukan penelitian untuk menganalisis data tekstual laporan masyarakat dengan text mining untuk kemudian dilakukan disposisi otomatis ke dalam dua kategori utama LAPOR! yaitu topik dan instansi terkait. Disposisi otomatis dilakukan menggunakan teknik problem transformation pada multilabel classification melalui algoritma klasifikasi support vector machine dan naïve bayes. Hasil penelitian menunjukkan bahwa disposisi otomatis dapat diterapkan ke dalam sistem LAPOR! dan dapat meningkatkan kinerja disposisi laporan. Algoritma yang menghasilkan performa terbaik di dalam penerapannya adalah algoritma support vector machine

The application of Information Technology and Communication (ICT) to escalate the competitive advantage is not only used in the industrial sector, but also in the government as well. The government of the Republic of Indonesia itsef, in the use of ICT, has built a system that enable its citizen to report their grievance and aspiration through LAPOR! system. This system turned out to be accepted with great enthusiasm by the public, as evidenced by the many reports to the government. In order to support the government’s performance, research is conducted to analyze the textual data using text mining, for later automatic disposition into two groups of LAPOR!'s category which is topik and instansi terkait. disposition is done using problem transformation technique in multilabel classification through support vector machine and naïve bayes classification algorithm. The result showed that automatic disposition can be applied into LAPOR! system and improves the report disposition’s performance. Algorithm that produces the best performance in the application is support vector machine. "
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Rangga Kharisma Putra
"ABSTRAK
Tren belanja yang terus meningkat mendorong tumbuhnya bisnis e-commerce di Indonesia yang salah satunya adalah suatu perusahaan e-commerce di Indonesia. Salah satu peran penting untuk mendukung bisnis e-commerce adalah kategorisasi produk yang baik. Kategorisasi produk yang baik akan membuat pencarian produk sesuai dengan kebutuhan dari pelanggan. Hal ini berdampak baik pada tingkat penjualan, pengalaman pengguna, maupun pengelolaan produk di sisi internal perusahaan. Akan tetapi, terdapat temuan kesalahan kategori yang penyebab utamanya adalah proses kategorisasi yang masih bersifat manual, berulang, dan massive.
Penelitian ini bertujuan untuk membantu menyelesaikan permasalahan tersebut dengan membuat suatu model yang mampu melakukan klasifikasi produk secara otomatis. Data yang digunakan adalah judul produk, sedangkan untuk label adalah kategori dari setiap produk. Penelitian ini melakukan percobaan terhadap dua representasi yaitu bag-of-words (BoW) dan TF-IDF. Selain itu, penelitian ini menggunakan algoritma naïve bayes dan SVM dalam percobaannya.
Hasil dari penelitian ini didapatkan model yang mampu melakukan klasifikasi produk salah satu perusahaan e-commerce secara baik. Kombinasi BoW dan SVM mampu menghasilkan model performa yang terbaik dengan nilai akurasi 96.40% dan F-measure 95.90%. Selain itu dari penelitian ini didapatkan hasil representasi BoW memberikan performa yang lebih baik dibandingkan dengan TF-IDF.

ABSTRACT
The increasing shopping trend encourages the growth of e-commerce businesses in Indonesia, one of which is e-commerce company in Indonesia. On of the important role to support e-commerce business is well-managed product categorization. Good product categorization will impact the product search according to the customer needs. This will affect the level of sales, user experience, and product management in the internal side of the company. However, some errors were found in the product category, the main causes are the manual categorization, repetitive, and massive process.
This study is aimed to solve the problem by making a model that able to classify products automatically. The data that used in this study is the product title, while the label is the category of each product. This study conducted experiments on two representations; bag-of-words (BoW) and TF-IDF. In addition, this study is using naïve bayes and SVM algorithms in the experiment.
This study resulted a model that able to classify one of e-commerce company products properly. The combination of BoW and SVM is able to produce the best performance model with an accuracy value of 96.40% and F-measure 95.90%. On the other hand, the results of the BoW representation provided the better performance than the TF-IDF."
2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Nababan, Arif Hamied
"Pembentukan RUU Cipta Kerja memunculkan berbagai macam polemik di Indonesia. Penolakan terhadap RUU tersebut ditunjukkan oleh masyarakat Indonesia dengan berbagai cara. Mulai dari diskusi dengar pendapat dengan DPR, membahas dan mengangkat isu-isu kontroversial dalam RUU tersebut di berbagai media sosial, bahkan sampai melakukan demonstrasi besar-besaran yang tidak jarang berakhir dengan kericuhan. Penelitian ini bertujuan untuk mengidentifikasi stance masyarakat terhadap RUU Cipta kerja pada media sosial Twitter. Dataset diambil dari Twitter menggunakan kata kunci terkait RUU Cipta Kerja sebanyak 9440 data Tweet dalam periode 25 Oktober 2019 sampai pada 25 Oktober 2020. Anotasi dilakukan menggunakan label PRO, ANTI, ABS, dan IRR. Eksperimen yang dilakukan mengguanakan fitur unigram, bigram, dan unigram+bigram, dengan algoritma Multinomial Naïve Bayes, Support Vector Machine, dan Logistic Regression. Model terbaik dari eksperimen tersebut adalah model yang menggunakan fitur unigram dengan menggunakan algoritma klasifikasi logistic regression yang dapat mencapai nilai micro f-1 score sebanyak 72,3%.

The formation of RUU Cipta Kerja (Job creation law) gave rise to various kinds of polemics in Indonesia. The Indonesian people have shown rejection of the law in various ways. Starting from hearing discussions with the DPR, discussing and raising controversial issues in the law on various social media, even holding large demonstrations that often end in chaos. This study aims to identify the public's stance on the job creation law on Twitter social media. The dataset was taken from Twitter using keywords related to the job creation law, totaling 9440 Tweets from 25 October 2019 to 25 October 2020. Annotations were carried out using the PRO, ANTI, ABS, and IRR labels. The experiments were carried out using unigram, bigram, and unigram + bigram features, with the Naïve Bayes Multinomial algorithm, Support Vector Machine, and Logistic Regression. The best model of the experiment is a model that uses the unigram feature using the logistic regression classification algorithm which can achieve a micro f-1 score of 72,3%."
Jakarta: Fakultas Ilmu Komputer Universita Indonesia, 2021
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>