Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 193127 dokumen yang sesuai dengan query
cover
Gilang Rendra Hadinata
"Industri asuransi jiwa di Indonesia belakangan ini sedang mengalami tren positif, dengan mencatat kenaikan laba sebesar 148,05 pada tahun 2017, dari tahun sebelumnya. Perusahaan asuransi sampai sekarang pun masih berfokus pada pertumbuhan bisnis, namun metode yang akan diambil bukan lagi melalui marketing dan saluran agen, namun melalui metode kalkulasi yang baru untuk jumlah manfaat bagi produk-produk asuransi jiwa. Penghitungan manfaat dihasilkan dengan mempertimbangkan dua hal yang penting, yakni risiko dari pemegang polis, dan kondisi keuangan perusahaan. Penelitian ini berfokus pada klasifikasi risiko dari pemegang polis yang dilakukan dengan dua metode yakni regresi logistik dan jaringan saraf tiruan, yang menghasilkan bahwa metode jaringan saraf tiruan menghasilkan performa yang lebih baik dalam mengklasifikasikan risiko dibandingkan regresi logistik.

Life insurance businesses in Indonesia are currently developing at a significant pace. Stated by Otoritas Jasa Keuangan, life insurance businesses in Indonesia recorded 148,05 increase in their total income from December 2016, while already gaining positive results life insurance companies still aiming to extent their businesses by marketing and agency strategies, however life insurance companies currently are looking to extent their profits by formulating new models to calculate to value the policyholder. The insured value calculated by assessing risk the policyholder would face and by considering the company rsquo s financial status. This research focused on the risk classification process to assess the risk faced by the policy holder, by using logistic regression methods and neural network, and resulting a slight favor to neural network for having better results in classifying risks of policyholder."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andre Nurrohman
"Penyakit Parkinson terbagi dalam dua subtipe, yaitu Tremor Dominant (TD) dan Postural Instability/Gait Dominant (PIGD). Tiap subtipe memiliki perbedaan dalam penanganan klinis, sehingga perlu dilakukan klasifikasi subtipe penyakit Parkinson. Dalam Statistika, ada beberapa model yang membahas klasifikasi diantaranya adalah decision tree, regresi logistik, dan logit leaf model (LLM). LLM merupakan model campuran dari decision tree dan regresi logistik yang diusulkan oleh De Caigny et al. (2018). Penulisan ini membahas klasifikasi subtipe penyakit Parkinson menggunakan model klasifikasi statistika beserta penanganan masalah imbalanced data yang terjadi pada data penyakit Parkinson. Diperoleh model klasifikasi regresi logistik dengan melakukan proses SMOTE ± = 600, = 200 untuk menangani masalah imbalanced data. Model tersebut memberikan akurasi sebesar 98,83%, sensitivitas sebesar 98,41%, dan spesifisitas sebesar 99,07%.

Parkinsons Disease has two sub-types which are Tremor Dominant (TD) and Postural Instability/Gait Difficulty (PIGD). Each subtype has the difference in clinical treatment, so it is necessary to classify Parkinsons Disease subtypes. In Statistics, there are statistical models for classifying such as decision tree, logistic regression, and logit leaf model (LLM). LLM is a hybrid model from decision tree and logistic regression that proposed by (De Caigny et al., 2018). In this thesis discuss Parkinsons Disease Classification using statistical models with imbalanced data problem handling happen in Parkinson`s Disease data. For the result, logistic regression by processing SMOTE ± = 600, = 200 to handle data imbalanced problem. The model provides an accuracy of 98,83%, sensitivity of 98.41%, and specificity of 99.07%.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldinda Albanna
"Sebuah perusahaan memerlukan sumber daya manusia yang baik agar dapat mencapai visi, misi, serta tujuan yang telah ditetapkan. Sumber daya manusia yang baik dapat dibangun dengan meningkatkan kesejahteraan dan kenyamanan pegawai sehingga produktivitas bekerja diharapkan dapat meningkat. Salah satu upaya yang dapat dilakukan adalah pemberian reward, seperti tunjangan lokasi. Bank Syariah "X" merupakan salah satu lembaga pada bidang perbankan syariah yang memberikan tunjangan lokasi kepada pegawainya. Peraturan yang ditetapkan pada Bank Syariah "X" mengenai tunjangan lokasi merupakan tunjangan yang diberikan kepada pegawai berdasarkan lokasi pegawai tersebut bekerja. Bank Syariah "X" memiliki tiga kategori tunjangan lokasi, yaitu Zona 1, Zona 2, dan Zona 3 & 4. Kebijakan ini terakhir ditetapkan pada tahun 2021. Sedangkan, pada rentang waktu hingga saat ini, terdapat perubahan kondisi, seperti keadaan lokasi outlet (cabang), pertumbuhan ekonomi, dan relokasi outlet Bank Syariah "X". Oleh karena itu, penelitian ini bertujuan untuk menganalisis faktor-faktor yang menjelaskan penentuan zonasi tunjangan lokasi memprediksi zonasi tunjangan lokasi outlet baru dari Bank Syariah "X". Zonasi tunjangan lokasi ditentukan berdasarkan faktor kemahalan, keterpencilan, dan akses lokasi. Faktor-faktor yang diduga mewakili faktor kemahalan, keterpencilan, dan akses lokasi, serta memengaruhi penentuan zonasi tunjangan lokasi adalah indeks harga konsumen (IHK), indeks pembangunan manusia (IPM), indeks kemahalan konstruksi (IKK), indeks pilar infrastruktur (IPI), jarak outlet ke puskesmas terdekat (JOP), dan jarak outlet ke sekolah dasar terdekat (JOSD). Zonasi tunjangan lokasi terdiri dari tiga kategori, yaitu Zona 1, Zona 2, dan Zona 3 & 4 yang bersifat ordinal sehingga model yang cocok adalah regresi logistik ordinal. Berdasarkan tujuan penelitian dan jenis variabel terikat, metode analisis data yang digunakan adalah regresi logistik ordinal. Penelitian ini menghasilkan faktor-faktor yang menjelaskan penentuan zonasi tunjangan lokasi adalah indeks kemahalan konstruksi (IKK), indeks pilar infrastruktur (IPI), dan jarak outlet ke puskesmas terdekat (JOP). Model regresi logistik yang dibentuk menghasilkan akurasi sebesar 70% dan balanced accuracy pada Zona 1 sebesar 81.2%, Zona 2 sebesar 70.8%, dan Zona 3 & 4 sebesar 76.7%. Hasil model regresi logistik ordinal ini dapat digunakan untuk memprediksi zonasi tunjangan lokasi outlet baru dari Bank Syariah "X". Berdasarkan kebijakan awal Bank Syariah "X", diperoleh bahwa sebanyak 80 outlet atau sebesar 35.6% outlet salah diklasifikasikan oleh model.

A company needs good human resources in order to achieve the vision, mission, and goals that have been set. Good human resources can be built by improving employee welfare and comfort so that work productivity is expected to increase. One of the efforts that can be made is the reward, such as location allowances. Bank Syariah “X” is one of the institutions in the field of Islamic banking that provides location allowances to its employees. The regulations set at Bank Syariah “X” regarding location allowances are allowances given to employees based on their replacement. Bank Syariah “X” has three categories of location allowances, namely Zone 1, Zone 2, and Zones 3 & 4. This policy was last established in 2021. Meanwhile, in the time span until now, there have been changes in conditions, such as the location of outlets (branches), economic growth, and the relocation of Bank Syariah “X” outlets. Therefore, this study aims to analyze the factors that explain the determination of location allowance zoning and predict the location allowance zoning of new outlets of Bank Syariah “X”. Location allowance zoning is determined based on the factors of costliness, remoteness, and location access. Factors that are thought to represent the factors of costliness, remoteness, and location access, and influence the determination of location allowance zoning are the consumer price index (CPI), human development index (HDI), construction cost index (CCI), infrastructure pillar index (IPI), outlet distance to the nearest health center (JOP), and outlet distance to the nearest elementary school (JOSD). The location allowance zoning consists of three categories, namely Zone 1, Zone 2, and Zone 3 & 4, which are ordinal in nature, so the suitable model is ordinal logistic regression. Based on the research objectives and the type of dependent variable, the data analysis method used is ordinal logistic regression. This research results in factors that explain the zoning determination of location allowances are the construction cost index (CCI), infrastructure pillar index (IPI), and the distance of the outlet to the nearest health center (JOP). The logistic regression model that was formed produced an accuracy of 70% and balanced accuracy in Zone 1 of 81.2%, Zone 2 of 70.8%, and Zones 3 & 4 of 76.7%. The results of this ordinal logistic regression model can be used to predict the zoning allowances for the location of new outlets of Bank Syariah “X”. Based on the initial policy of Bank Syariah "X", it's obtained that 80 outlets or 35.6% of outlets misclassified by the model. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizkiani Febrianti
"Estimasi parameter pada model regresi logistik pada umumnya menggunakan metode maximum likelihood dengan iterasi Newton Raphson. Pada model regresi logistik, estimasi parameter menggunakan metode maximum likelihood tidak dapat digunakan apabila ukuran sampel kecil dan proporsi kejadian sukses kecil. Permasalahan yang muncul saat ukuran sampel kecil dan proporsi sukses kecil, jika menggunakan metode maximum likelihood adalah proses iterasi yang tidak konvergen. Oleh sebab itu dalam kondisi tersebut, metode maximum likelihood tidak dapat digunakan untuk estimasi parameter.
Salah satu cara untuk mengatasi ketidakkonvergenan pada iterasi tersebut adalah menggunakan modifikasi score function. Modifikasi score function dapat digunakan untuk mendapatkan estimasi parameter model regresi logistik dengan melakukan modifikasi pada fungsi likelihood. Contoh aplikasi diberikan untuk menunjukkan bahwa kemungkinan estimasi parameter model regresi logistik dengan ukuran sampel kecil dan proporsi sukses kecil menggunakan metode maximum likelihood dengan iterasi Newton Raphson memberikan hasil yang tidak konvergen dan hal ini dapat diselesaikan dengan menggunakan modifikasi score function.

The maximum likelihood method with Newton Raphson iteration is used in general to estimate the parameter on logistic regression model. This parameter estimation using the maximum likelihood method cannot be used if the size of the sample and proportion of successful events are small. It is because the iteration process will not convergent to some point. Therefore, the maximum likelihood method cannot be used to estimate the parameter.
One of the ways to resolve this convergent problem is using the score function modification. This modification is used to obtain the parameter estimation on logistic regression model by doing some modification on the likelihood function. The example of parameter estimation, using maximum likelihood method with small size of sample and proportion of successful events, is given to show may be the iteration process is not convergent and this can be solved with modification score function.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wisang Residata
"Pola konsumsi rokok merupakan tema penting di Indonesia. Penelitian ini bertujuan untuk menganalisis faktor-faktor yang mempengaruhi frekuensi merokok di Indonesia dengan menggunakan data Survei Demografi Kesehatan Indonesia (IDHS). Dalam penelitian ini, Determinan frekuensi merokok seperti Umur, Jenis Kelamin, Tingkat Pendidikan, Tingkat Kesejahteraan, Status Pernikahan dan Tempat Tinggal. diteliti untuk menentukan pengaruhnya terhadap frekuensi merokok. Berdasarkan hasil analisis regresi logistik ordinal, ditemukan bahwa individu yang termasuk dalam kategori umur remaja (15-24 tahun), berjenis kelamin laki-laki, memiliki tingkat pendidikan dan tingkat kesejahteraan yang lebih rendah, berstatus belum menikah atau cerai/hidup terpisah, serta tinggal di wilayah perkotaan cenderung akan menjadi perokok dengan frekuensi yang tinggi. Hasil ini memberikan bukti empiris yang kuat mengenai faktor-faktor risiko yang perlu menjadi perhatian utama dalam merancang strategi pencegahan untuk mengendalikan perilaku merokok di kalangan masyarakat Indonesia.

The pattern of cigarette consumption is an important theme in Indonesia. This study aims to analyze the factors influencing smoking frequency in Indonesia using data from the Indonesia Demographic and Health Survey (IDHS). In this research, determinants of smoking frequency such as Age, Gender, Education Level, Wealth Index, Marital Status, and Residence were examined to determine their impact on smoking frequency. Based on the results of ordinal logistic regression analysis, it was found that individuals who fall into the teenage age category (15-24 years), are male, have lower education and wealth levels, are unmarried or divorced/separated, and live in urban areas tend to be smokers with high frequency. These results provide strong empirical evidence regarding the risk factors that need to be a primary focus in designing prevention strategies to control smoking behavior among the Indonesian population."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Rizky Adha
"ABSTRACT
Pemodelan regresi telah diterapkan dalam perbankan ritel karena kemampuannya dalam menganalisis data kontinu maupun diskrit. Hal tersebut merupakan alat yang penting dalam penilaian risiko kredit, stress testing, serta evaluasi aset kredit. Pada tugas akhir ini, pendekatan yang digunakan adalah dengan menggunakan model regresi logistik multinomial untuk mengetahui faktor-faktor yang memengaruhi terjadinya default dan attrition pada suatu kredit. Selain itu, pada tugas akhir ini juga akan diperkenalkan pendekatan regresi spline dengan menggunakan truncated power basis untuk memodelkan fungsi hazard. Fleksibilitas dari fungsi spline memberikan kemampuan untuk memodelkan fungsi hazard yang berbentuk nonlinier dan tidak beraturan. Kemudian, dengan menggunakan regresi spline dan regresi logistik multinomial, akan diperoleh sebuah hasil dan interpretasi yang lebih baik. Terdapat beberapa kelebihan dari penggunaan kedua model tersebut. Pertama, dengan menggunakan fungsi regresi spline yang fleksibel, dapat dimodelkan fungsi hazard yang berbentuk nonlinier dan tidak beraturan. Kedua, mudah dipahami dan diterapkan, dan bentuk parametrik model regresi logistik multinomial yang sederhana dapat memudahkan dalam interpretasi model. Ketiga, memiliki kemampuan untuk prediksi. Pada akhir pembahasan, dengan menggunakan sebuah data kartu kredit akan dilakukan pengaplikasian dari model regresi logistik multinomial dan regresi spline, dilengkapi dengan penjelasan secara statistika dan akurasi prediksi.

ABSTRACT
Regression modeling has been adapted in retail banking because of its capability to analyze the continuous and discrete data. It is an important tool for credit risk scoring, stress testing and credit asset evaluation. In this thesis, the approach used is multinomial logistic regression model to gain the information regarding the factors that affect the occurrence of default and attrition. In addition, this thesis will also introduce spline regression approach using truncated power basis to model the hazard function. The flexibility of spline function allows us to model the nonlinear and irregular shapes of the hazard functions. Then, by using spline regression and multinomial logistic regression model, there will be a better result and interpretation. There are several advantages by using those both models. First, by using the flexible spline regression function, it can model nonlinear and irregular shapes of the hazard functions. Second, it is easy to understand and implement, and its simple parametric form from multinomial logistic regression model can make it easy in model interpretation. Third, the model has the ability to do prediction. Furthermore, by using a credit card dataset, we will demonstrate how to build these model, and we also provide statistical explanatory and prediction accuracy."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Agung Nugraha
"Penelitian ini bertujuan untuk membuat model peramalan yang efektif dalam meramalkan penjualan produk mobil dalam segmen B2B (Business to Business) agar didapatkan estimasi penjualan produk di masa mendatang. Peneilitian ini menggunakan regresi linear berganda dan jaringan syaraf tiruan yang dioptimasi dengan algoritma genetika.  Faktor peramalan penjualan mobil pada umumnya meliputi penjualan mobil secara nasional, Indeks Harga konsumen, Indeks Kepercayaan Konsumen, Laju Inflasi, Produk Domestik Bruto (GDP), dan  Harga Bahan Bakar Minyak (BBM). Penulis juga telah mendapatkan faktor yang berpengaruh dalam penjualan segmen B2B dengan menyebarkan survey (kuesioner) kepada 102 orang DMU (Decision Making Unit) yang memiliki keputusan dalam pembelanjaan mobil di perusahaan mereka. Kemudian hasil scoring dari kuesioner tersebut kami bobotkan pada data training dan simulasi pada Jaringan Syaraf Tiruan. Hasil penelitian ini menunjukkan bahwa Jaringan Syaraf Tiruan yang dioptimasi  dengan Algoritma Genetika dengan 18 Variabel dapat meningkatkan akurasi peramalan penjualan mobil segmen B2B dengan error 1,3503%, jika dibandingkan nilai error pada Jaringan Syaraf Tiruan biasa sebesar 4,173% dan Regresi Linear Berganda sebesar 17,68%.

ABSTRACT
This study aims to create an effective forecasting model in predicting sales of car products in the B2B segment (Business-to-Business) in order to obtain estimates of product sales in the future. This research uses multiple linear regression and artificial neural networks that are optimized by genetic algorithms. Car sales forecasting factors generally include National car sales, Consumer Price Index, Consumer Confidence Index, Inflation Rate, Gross Domestic Product (GDP), and Gasoline Price. The author has also obtained an influential factor in the sale of B2B segments by distributing surveys (questionnaires) to 102 DMU (Decision Making Unit) who have a decision in car purchasing at their company. Then the results of the scoring from the questionnaire are weighted to the training and simulation data on the Artificial Neural Network. The results of this study indicate that the Artificial Neural Network optimized with Genetic Algorithm can improve the accuracy of forecasting B2B segment car sales with an error of 1.3503%, when compared to the error value in the usual Artificial Neural Network of 4.173% and Multiple Linear Regression of 17.68 %."
Jakarta: Fakultas Teknik Universitas Indonesia, 2020
T54561
UI - Tesis Membership  Universitas Indonesia Library
cover
Risfania Nurdinda Sari
"COVID-19 adalah penyakit yang disebabkan oleh virus SARS-CoV-2 dan menyerang sistem pernapasan manusia. Selain menganggu kesehatan fisik, pandemi COVID-19 juga memberikan dampak psikologis, salah satunya adalah tingkat stres yang meningkat pada masyarakat. Penelitian ini bertujuan untuk mengidentifikasi faktor-faktor yang berasosiasi dengan tingkat stres pada pandemi COVID-19. Dalam mencapai tujuan tersebut, penelitian ini menggunakan metode classification tree dan regresi logistik multinomial. Sebelum melakukan proses identifikasi faktor menggunakan classification tree, dilakukan penanganan masalah imbalance data menggunakan metode SMOTE. Selanjutnya, dilakukan kuantifikasi risiko faktor-faktor yang teridentifikasi pada classification tree menggunakan analisis regresi logistik multinomial. Kinerja model diukur menggunakan nilai precision, recall, F1-Score, dan AUC. Hasil yang diperoleh adalah model classification tree dengan penanganan imbalance data menggunakan SMOTE dapat meningkatkan kinerja model dengan nilai precision 0,5980, nilai recall 0,8653, nilai F1-Score 0,7072, dan AUC 0,702. Dengan model tersebut, didapatkan faktor-faktor yang teridentifikasi berasosiasi dengan tingkat stres pada pandemi COVID-19 adalah Total_OECDInsititutions, Total_CoronaConcerns, dan Age. Peningkatan nilai Corona Concerns cenderung memberikan risiko peningkatan tingkat stres, sedangkan peningkatan nilai OECDInsititutions dan Age cenderung memberikan risiko penurunan tingkat stres.

COVID-19 is a disease caused by the SARS-CoV-2 virus that attacks the human respiratory system. In addition to disrupting physical health, the COVID-19 pandemic also has psychological impacts, one of which is an increased level of stress. This study aims to identify factors associated with the level of stress during the COVID-19 pandemic. The study employs the classification tree method and multinomial logistic regression. Prior to the factor identification process using the classification tree, the issue of imbalanced data is addressed using the SMOTE method. Subsequently, the quantification of risk factors identified in the classification tree is conducted using multinomial logistic regression analysis. The model's performance is measured using precision, recall, F1-score, and AUC values. The results obtained indicate that the classification tree model with the handling of imbalanced data using SMOTE can improve model performance, with a precision value of 0,5980, recall value of 0,8653, F1-score value of 0,7072, and AUC value of 0,702. With this model, the identified factors associated with the level of stress during the COVID-19 pandemic are Total_OECDInstitutions, Total_CoronaConcerns, and Age. An increase in Corona Concerns tends to pose a risk of increased stress levels, while an increase in OECD Institutions and Age tends to pose a risk of decreased stress levels."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Maharani
"Jika biaya kerugian yang disebabkan peristiwa kebakaran dapat diprediksi dengan big-structured data mengenai faktor-faktor penyebab kebakaran yang sudah ada maka penentuan polis asuransi kebakaran di perusahaan asuransi menjadi lebih efektif dan efisien. Pada tesis ini, model Deep Neural Network (DNN) digunakan untuk memprediksi biaya kerugian akibat kebakaran untuk polis asuransi, kemudian membandingkan akurasi model DNN dan NN. Dari hasil penelitian didapatkan bahwa akurasi (MSE) model DNN optimal sebesar 0,04217331959 ±0,63924424e-15, sedangkan akurasi (MSE) model NN yang optimal sebesar 0,04217335183±  0,64079999e-15. Hal tersebut menunjukan bahwa model DNN sebanding dengan model NN dalam memprediksi biaya kerugian pada asuransi kebakaran dengan data yang digunakan merupakan big-structured data. Selain itu, running time program untuk model NN lebih cepat dibandingkan dengan model DNN.

If the loss costs caused by fire events can be predicted with big structured data regarding the factors that cause the fires that already exist, determining fire insurance policies in the insurance companies can be more effective and efficient. In this study, the Deep Neural Network (DNN) model is used to predict the loss cost due to fire for insurance policies, then compare the accuracy of the DNN and NN models. The results showed that the accuracy (MSE) of the optimal DNN model was 0.04217331959 ± 0.63924424e-15. While the optimal NN model was 0.04217335183 ± 0.64079999e-15. This shows that the DNN model is comparable with the NN model in predicting the loss cost in fire insurance with the data used being big structured data. In addition, the running time of the program for the NN model is faster than the DNN model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T53940
UI - Tesis Membership  Universitas Indonesia Library
cover
Teuku Mohamad Anshar Lotan
"ABSTRAK
Tujuan dari permasalahan filtrasi spam adalah mengidentifikasi sebuah e-mail sebagai spam atau bukan spam. Dengan berkembangnya machine learning, semakin banyak permasalahan yang dapat diselesaikan. Salah satunya adalah filtrasi spam. Filtrasi e-mail spam dapat dilakukan dengan bantuan klasifikasi biner dengan machine learning untuk pengklasifikasiannya. Dalam penelitian ini akan menggunakan regresi logistik dan perceptron untuk melakukan proses filtrasi spam. Data yang digunakan menggunakan dataset Enron Spam. Hasil dari analisis menunjukkan bahwa regresi logistik menunjukkan hasil yang lebih baik dari perceptron. Di mana akurasi regresi logistik mencapai 97,02, sedangkan tingkat akurasi perceptron adalah 95,54, tetapi waktu pelatihan perceptron hanya membutuhkan waktu 3,8 sekon, sedangkan regresi logistik membutuhkan waktu 780,94 sekon.

ABSTRACT
The goal of spam filtering is to identify an e mail as spam or not spam. With the rapid development of machine learning, more problem can be solved. One of it is spam filtration. E mail spam filtering can be done with the help of binary classifier using machine learning for the classification. This research would use logistic regression and perceptron technique to filter spam. Data taken from Enron Spam dataset. The result indicate that logistic regression show better result than perceptron. Whereas the accuracy from logistic regression could reach 97,02, while accuracy from perceptron is 95,54, meanwhile the training time for perceptron takes only 3,8 second, while logistic regression takes about 780,94 second. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>