Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5209 dokumen yang sesuai dengan query
cover
Pearson, Ronald K., 1952-
"Data mining is concerned with the analysis of databases large enough that various anomalies, including outliers, incomplete data records, and more subtle phenomena such as misalignment errors, are virtually certain to be present. Mining Imperfect Data describes in detail a number of these problems, as well as their sources, their consequences, their detection, and their treatment. Specific strategies for data pretreatment and analytical validation that are broadly applicable are described, making them useful in conjunction with most data mining analysis methods. Examples are presented to illustrate the performance of the pretreatment and validation methods in a variety of situations, both simulation based, where "correct" results are known unambiguously, and real data examples that illustrate typical cases met in practice."
Philadelphia : Society for Industrial and Applied Mathematics, 2005
e20443143
eBooks  Universitas Indonesia Library
cover
Hancock, Monte F., Jr.
Boca Raton: CRC Press, 2012
006.312 HAN p
Buku Teks SO  Universitas Indonesia Library
cover
Han, Jiawei
"Summary:
Equips you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets. This title focuses on important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data."
Burlington: Elsevier, 2012
006.312 HAN d
Buku Teks SO  Universitas Indonesia Library
cover
Angelina Prima Kurniati
"Process Mining adalah bidang ilmu yang relatif baru dan masih terus berkembang. Bidang ini menarik dan dibutuhkan dalam berbagai domain karena dapat digunakan untuk menggali informasi tentang proses bisnis dari sekumpulan besar data yang dimiliki perusahaan dalam bentuk event log.
"
Bandung: Informatika, 2023
006.312 ANG p
Buku Teks SO  Universitas Indonesia Library
cover
Kantardzic, Mehmed
Hoboken: NJ IEEE Press, 2020
006.312 KAN d
Buku Teks SO  Universitas Indonesia Library
cover
Elis
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 1999
S25642
UI - Skripsi Membership  Universitas Indonesia Library
cover
Witten, I.H. (Ian H.)
"Part I. Machine Learning Tools and Techniques: 1. What?s iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what?s been learned -- Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond -- Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer -- 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer."
Amsterdam: Elsevier , 2011
006.312 WIT d
Buku Teks SO  Universitas Indonesia Library
cover
Zaki, Mohammed J.
New York: Cambridge University Press, 2014
006.312 ZAK d
Buku Teks SO  Universitas Indonesia Library
cover
Thony Antonius
"Kerasnya persaingan usaha dan suasana kompetisi pada industri perbankan yang semakin ketat menjadikan perusahaan berusaha sekeras mungkin untuk mencegah berpindahnya pelanggan mereka ke perusahaan pesaing. Salah satu cara untuk bisa mencegah berpindahnya pelanggan ke perusahaan pesaing adalah dengan melakukan prediksi dan deteksi dini pelanggan-pelanggan mana saja yang berpotensi meninggalkan perusahaan dan beralih ke perusahaan pesaing yaitu dengan melakukan churn prediction.
Churn prediction sudah diimplementasikan secara luas di industri telekomunikasi sebagai bagian dari churn management. Salah satu teknik yang digunakan untuk melakukan churn prediction adalah data mining. Tesis ini mencoba menggali pola-pola churn dari salah satu institusi perbankan nasional, dengan harapan bisa menemukan sebuah model churn bagi intitusi perbankan tersebut.
Hasil analisa yang dilakukan melahirkan pengetahuan mengenai kondisi seperti apa yang mengakibatkan seorang nasabah akan menutup rekening mereka. Penggalian informasi juga berhasil menemukan beberapa pola yang seperti apa yang bisa dijadikan pertanda seorang nasabah akan menutup rekening mereka. Keterbatasan jumlah variabel dari dataset yang digunakan menghasilkan model data mining menjadi sangat sederhana, sehingga diperlukan adanya tambahan variabel lain untuk menghasilkan model yang lebih kuat.

The harshness of the competition for efforts and the atmosphere of the competition in the increasingly tight banking industry made the company try as hard as possible to prevent their customer's moving to the competitor's company.
Churn prediction is One of the methods that could prevent the customer's moving to the competitor's company by carrying out the prediction and the early detection of any customer who had the potential to leave the compani and to change to the competitor's company.Churn prediction already implemented widely in the telecommunications industry as a part of churn management. One of the techniques that was used to do churn prediction was the data mining. This thesis tried to dig up patterns churn from one of the national banking institutions, in the hope of could find a model churn for this banking institution.
Results of the analysis that was carried out produced knowledge concerning the condition like what resulted in a customer closing their account. The excavation of information also succeeded in finding several patterns that like what could be made the sign of a customer will close their account. The limitations of the number of variables from the set data that was used produced the data model mining became very simple, so as to be needed by the existence of the addition of the other variable to produce the stronger model.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2008
T-Pdf
UI - Tesis Open  Universitas Indonesia Library
cover
Mohamed Medhat Gaber, editor
"Data mining, an interdisciplinary field combining methods from artificial intelligence, machine learning, statistics and database systems, has grown tremendously over the last 20 years and produced core results for applications like business intelligence, spatio-temporal data analysis, bioinformatics, and stream data processing.
The fifteen contributors to this volume are successful and well-known data mining scientists and professionals. Mohamed Medhat Gaber has asked them (and many others) to write down their journeys through the data mining field, trying to answer the following questions, 1. What are your motives for conducting research in the data mining field?2. Describe the milestones of your research in this field. 3. What are your notable success stories?4. How did you learn from your failures?5. Have you encountered unexpected results?6. What are the current research issues and challenges in your area?7. Describe your research tools and techniques. 8. How would you advise a young researcher to make an impact?9. What do you predict for the next two years in your area?10. What are your expectations in the long term?"
Berlin: [, Springer-Verlag], 2012
e20408717
eBooks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>