Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 33048 dokumen yang sesuai dengan query
cover
"Doing data science is difficult. Projects are typically very dynamic with requirements that change as data understanding grows. The data itself arrives piecemeal, is added to, replaced, contains undiscovered flaws and comes from a variety of sources. Teams also have mixed skill sets and tooling is often limited. Despite these disruptions, a data science team must get off the ground fast and begin demonstrating value with traceable, tested work products. This is when you need Guerrilla analytics.
In this book, you will learn about :
The Guerrilla analytics principles, simple rules of thumb for maintaining data provenance across the entire analytics life cycle from data extraction, through analysis to reporting.
Reproducible, traceable analytics, how to design and implement work products that are reproducible, testable and stand up to external scrutiny.
Practice tips and war stories, 90 practice tips and 16 war stories based on real-world project challenges encountered in consulting, pre-sales and research.
Preparing for battle: how to set up your team's analytics environment in terms of tooling, skill sets, workflows and conventions.
Data gymnastics, over a dozen analytics patterns that your team will encounter again and again in projects.
"
Waltham, MA: Morgan Kaufmann, 2015
e20427051
eBooks  Universitas Indonesia Library
cover
Ridge, Enda
"
ABSTRACT
Doing data science is difficult. Projects are typically very dynamic with requirements that change as data understanding grows. The data itself arrives piecemeal, is added to, replaced, contains undiscovered flaws and comes from a variety of sources. Teams also have mixed skill sets and tooling is often limited. Despite these disruptions, a data science team must get off the ground fast and begin demonstrating value with traceable, tested work products. This is when you need Guerrilla Analytics.
n this book, you will learn about:
The Guerrilla Analytics Principles: simple rules of thumb for maintaining data provenance across the entire analytics life cycle from data extraction, through analysis to reporting.
Reproducible, traceable analytics: how to design and implement work products that are reproducible, testable and stand up to external scrutiny.
Practice tips and war stories 90 practice tips and 16 war stories based on real-world project challenges encountered in consulting, pre-sales and research.
Preparing for battle: how to set up your team's analytics environment in terms of tooling, skill sets, workflows and conventions.
Data gymnastics: over a dozen analytics patterns that your team will encounter again and again in projects
The Guerrilla Analytics Principles: simple rules of thumb for maintaining data provenance across the entire analytics life cycle from data extraction, through analysis to reportingReproducible, traceable analytics: how to design and implement work products that are reproducible, testable and stand up to external scrutinyPractice tips and war stories: 90 practice tips and 16 war stories based on real-world project challenges encountered in consulting, pre-sales and researchPreparing for battle: how to set up your team's analytics environment in terms of tooling, skill sets, workflows and conventionsData gymnastics: over a dozen analytics patterns that your team will encounter again and again in projects."
Boston: Elsevier, 2015
006.312 RID g
Buku Teks SO  Universitas Indonesia Library
cover
Wu, Junjie
"This book addresses these challenges and makes novel contributions in establishing theoretical frameworks for K-means distances and K-means based consensus clustering, identifying the "dangerous" uniform effect and zero-value dilemma of K-means, adapting right measures for cluster validity, and integrating K-means with SVMs for rare class analysis. This book not only enriches the clustering and optimization theories, but also provides good guidance for the practical use of K-means, especially for important tasks such as network intrusion detection and credit fraud prediction. The thesis on which this book is based has won the "2010 National Excellent Doctoral Dissertation Award", the highest honor for not more than 100 PhD theses per year in China."
Berlin: Springer-Verlag, 2012
e204063793
eBooks  Universitas Indonesia Library
cover
Fried, Louis
Reston, VA: Reston Publishing, 1979
658.05 FRI p
Buku Teks SO  Universitas Indonesia Library
cover
Hafsa Khaerunisa Wenno
"Data mining merupakan teknik pengolahan data yang dapat digunakan untuk menemukan pola-pola kelompok dan informasi yang berguna dari kumpulan data tersebut. Salah satu teknik data mining adalah metode triclustering. Triclustering bekerja pada data tiga dimensi. Umumnya algoritma tricluster tidak efektif dalam menganalisis titik waktu pegamatan yang berjumlah sedikit. Oleh karena itu, dikembangkanlah algoritma triclustering berbasis pola yang dirancang untuk menganalisis data microarray dengan jumlah titik waktu pengamatan sedikit yaitu Order Preserving Tricluster (OPTricluster). OPTricluster membentuk tricluster dengan mengidentifikasi gen-gen yang memiliki perubahan tingkat ekspresi yang sama pada subset kondisi eksperimen disepanjang titik waktu. Setelah tricluster didapatkan, analisis Gene Ontology dibutuhkan untuk mendapatkan pemahaman anotasi gen pada hasil tricluster. Metode OPTricluster diimplementasikan pada data microarray sel kanker pankreas ASPC-1 dengan beberapa skenario menggunakan threshold yang berbeda. Skenario terbaik ditunjukkan oleh threshold optimum yang diperoleh dengan membandingkan rata-rata skor Coverage Tricluster dan Tricluster Quality Index. Kemudian tricluster dari skenario terbaik dianalisis dengan Gene Ontology (GO). Hasil penelitian ini menunjukkan bahwa metode OPTricluster berhasil membentuk tricluster dengan kinerja yang baik pada 3 pola tricluster yaitu tricluster pola constant, conserved, dan divergent. Selanjutnya analisis GO dilakukan pada tricluster terbaik pola conserved yaitu tricluster pada kelompok gen yang memiliki pola perubahan tingkat ekspresi gen yang sama saat diberikan obat JQ1 dan diperoleh informasi bahwa respon dari gen-gen sel kanker pankreas ASPC-1 dominan terlibat dalam proses metabolisme, dimana gen-gen tersebut berperan dalam perubahan tingkat ekspresi gen, selain itu letak gen-gen tersebut pun berada dalam inti sel.

Data mining is data processing techniques that can be used to find group patterns and useful information from the data set. One of the data mining techniques is the triclustering method. Triclustering works on three-dimensional data. Generally, tricluster algorithms are not effective in analyzing a small number of observation time points. Therefore, a pattern-based triclustering algorithm designed to analyze microarray data with a small number of observation time points was developed under the name Order Preserving Tricluster (OPTricluster). OPTricluster forms triclusters by identifying genes that have similar expression level changes in a subset of experimental conditions across time points. Once the tricluster is obtained, analysis with Gene Ontology is required to gain an understanding of gene annotation in the tricluster result. OPTricluster method was implemented on ASPC-1 pancreatic cancer cell microarray data with several scenarios using different thresholds. The best scenario is indicated by the optimum threshold obtained by comparing the average Tricluster Coverage and Tricluster Quality Index scores. Then the tricluster of the best scenario is analyzed with Gene Ontology (GO). The results showed that the OPTricluster method successfully formed tricluster with good performance in 3 tricluster patterns, namely constant, conserved, and divergent tricluster patterns. Furthermore, GO analysis was carried out on the best tricluster conserved pattern, namely tricluster in the gene group that has the same pattern of changes in gene expression levels when given the drug JQ1 and obtained information that the response of ASPC-1 pancreatic cancer cell genes is dominantly involved in metabolic processes, where these genes play a role in changes in gene expression levels, besides that the location of these genes is also in the cell nucleus."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Weaver, Barbara N.
New York: John Wiley & Sons, 1974
658.054 WEA c
Buku Teks SO  Universitas Indonesia Library
cover
Foster, Provost
"Provides an introduction to the fundamental principles of data science, walking the reader through the "data-analytic thinking" necessary for extracting useful knowledge and business value from collected data."
Sebastopol, Calif: O'Reilly, 2013
006.312 PRO d
Buku Teks SO  Universitas Indonesia Library
cover
Amiruddin
"Persaingan dalam dunia bisnis khususnya perbankan yang semakin ketat membuat para pelakunya harus selalu memikirkan strategi-strategi terobosan yang dapat menjamin keberlangsungan bisnis mereka. Kepuasan pelanggan merupakan salah satu faktor yang sangat perlu diperhatikan untuk mengikat pelanggan agar tetap setia pada produk atau layanan yang ditawarkan. Salah satu aset utama yang dimiliki oleh perusahaan perbankan dewasa ini adalah data transaksi bisnis dalam jumlah yang sangat besar. Hal ini menciptakan sebuah kebutuhan akan adanya teknologi yang dapat memanfaatkannya untuk menggali pengetahuan-pengetahuan baru, yang dapat membantu dalam perencanaan strategi bisnis di masa depan. Dalam hal tersebut teknologi data mining hadir sebagai sebuah solusi yang dapat diterapkan.
Dalam tulisan ini akan dibahas implementasi data mining untuk menemukan model berupa association rules yang bisa diinterpretasikan menjadi pengetahuan baru mengenai karakteristik beberapa obyek layanan perbankan Bank XYZ. Pengetahuan baru tersebut nantinya bisa digunakan sebagai bahan analisis untuk menentukan rencana strategis ke depan khususnya dalam rangka meningkatkan kinerja layanan sehingga pelanggan tetap setia terhadap produk dan layanan Bank XYZ.

The tighter competition in banking industry motivates the actors to always think of new strategies to ensure their business sustainability. Customer satisfaction must be maintained to make customers remain loyal to the offered products or services. One of the main assets of banking organization or corporate is a large number of business transaction data. This creates a need of new technologies to mine new knowledges, which can assist management in making future business strategy plans. Data mining technology is one applicable solution.
This thesis describes the implementation of data mining in order to find association rules model which can be further interpreted as new knowledges on banking service characteristic of Bank XYZ. The new knowledges will be useful to determine strategic plans in the future, especially in increasing the performance of products or services. They finally can make the customers loyal to products or services of Bank XYZ.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2007
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Gildersleeve, Thomas R.
Englewood Cliffs, NJ: Prentice-Hall, 1978
658.4032 GIL s
Buku Teks  Universitas Indonesia Library
cover
Rizka Nadia Fatma
"Dalam melaksanakan tugasnya sebagai penyelenggara pendidikan akademik, profesi, spesialis dan vokasi dalam sejumlah disiplin ilmu pengetahuan, teknologi, budaya, dan seni, Universitas Indonesia melakukan berbagai proses dan kegiatan akademik yang membutuhkan pengambilan keputusan. Saat ini proses analisa hanya dapat dilakukan berdasarkan data yang telah ada pada kurun waktu tertentu. Hal ini akan membatasi proses analisa tersebut. Dalam pengembangannya proses pengambilan keputusan akan lebih optimal jika didukung oleh sistem yang mampu menemukan pola atau hubungan dari kumpulan data yang ada. Kemudian dari pola atau hubungan yang didapatkan tersebut dilakukan prediksi untuk masa yang akan datang. Disinilah peran data mining diperlukan sebagai salah satu metode Knowledge Discovery in Databases (KDD), sehingga proses analisa untuk kegiatan akademik dapat lebih dioptimalkan. Permasalahan yang ada saat ini adalah tidak adanya data mining database dan aplikasi data mining yang mampu melakukan proses pencarian knowledge dalam basis data yang kemudian mampu mendukung proses analisa dan pengambilan keputusan untuk kegiatan akademik.
Tugas akhir dengan topik 'Perancangan Aplikasi Data Mining Untuk Kegiatan Akademik Di Universitas Indonesia' untuk ruang lingkup fakultas adalah salah satu solusi untuk mengatasi permasalahan di atas. Tugas akhir ini bertujuan untuk melakukan kajian analisa perancangan data mining database dan aplikasi data mining untuk kegiatan akademik di Universitas Indonesia.
Metodologi yang digunakan dalam tugas akhir ini dimulai dari pembelajaran terhadap teori-teori yang relevan dengan basis data, data warehouse, data mining, dan Knowledge Discovery in Databases (KDD). Kemudian dilanjutkan dengan melakukan kajian analisa terhadap permasalahan, analisa basis data untuk data mining, analisa data mining berupa kajian tahapan dan persiapan yang harus dilakukan, serta pemilihan studi kasus evaluasi keberhasilan studi mahasiswa. Setelah itu baru diambil kesimpulan yang sesuai dengan hasil analisa. Hasil yang diperoleh dari tugas akhir ini adalah bahwa penerapan konsep data mining pada ruang lingkup fakultas di Universitas Indonesia dapat membantu mengoptimalkan proses pengambilan keputusan untuk kegiatan akademik.
Hasil analisa yang dilakukan meliputi analisa permasalahan, analisa basis data untuk kebutuhan data mining, dan analisa data mining. Untuk mengembangkan aplikasi data mining dibutuhkan data warehouse atau basis data tersendiri yang memenuhi syarat dan mampu menyediakan data yang relevan dengan kebutuhan data mining. Hasil lain yang ditemukan adalah bahwa penggunaan aplikasi data mining untuk ruang lingkup akademik memerlukan aplikasi yang harus di-customized terlebih dahulu. Sedangkan hasil uji coba dengan menggunakan aplikasi statistik, yaitu SPSS menunjukkan bahwa algoritma regresi dapat digunakan untuk memprediksi IPK mahasiswa pada semester yang akan datang. Saran yang dapat diberikan untuk pengembangan selanjutnya adalah pengembangan analisa yang lebih spesifik yang diikuti dengan uji coba dengan menggunakan aplikasi data mining dan implementasi. Selain itu memperluas ruang lingkup proses analisa dan pengambilan keputusan yang tidak terbatas hanya pada evaluasi keberhasilan studi, namun dikaitkan dengan hal lain yang masih relevan seperti kaitan evaluasi keberhasilan studi dengan alokasi jadwal kuliah, dan sebagainya. Saran yang terakhir adalah mengembangkan data warehouse untuk ruang lingkup universitas, sehingga penerapan data mining tidak hanya terbatas pada kegiatan akademik."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2005
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>