Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 187072 dokumen yang sesuai dengan query
cover
Dwi Nanni Nurhayati
"Saat ini transaksi perdagangan tidak hanya menggunakan cara konvensional namun telah memanfaatkan perkembangan teknologi, informasi dan komunikasi yaitu transaksi jual beli secara elektronik atau online. Salah satu aplikasi yang diterapkan dalam jual beli secara online adalah sistem rekomendasi. Salah satu strategi dalam sistem rekomendasi adalah collaborative filtering dengan metode latent variable model. Latent variable model merupakan metode perekomendasian yang menganalisis pola hubungan diantara pengguna dan produk secara langsung, yaitu berdasarkan kemiripan/jarak antara pengguna dan produk. Hal ini dapat terjadi karena baik pengguna maupun produk memiliki fitur yang sama. Metode latent variable model yang sering digunakan pada sistem rekomendasi adalah faktorisasi matriks.
Salah satu metode optimasi dalam faktorisasi matriks adalah metode gradient descent. Namun karena data yang tersedia dalam membangun model sistem rekomendasi cukup banyak bervariasi maka memungkinkan terjadinya overfitting dan bias. Oleh karena itu pada penelitian ini akan menganalisis akurasi model faktorisasi matriks berbasis metode gradient descent dengan regularisasi dan bias. Eksperimen dilakukan melalui simulasi komputasi untuk mendapatkan parameter model yang optimal.
Berdasarkan eksperimen yang telah dilakukan pada saat 𝑘=5 dan 𝜆1=0.05 model faktorisasi matriks berbasis metode gradient descent dengan regularisasi dan bias memiliki tingkat akurasi yang lebih baik dengan model faktorisasi matriks berbasis metode gradient descent dengan regularisasi saja yaitu 0.93552 dan 1.19219.

Nowdays transactions of trade does not only do conventionally but using technology development, information and communication, such as electronic trade or online. One of application which uses in online trade is recommender systems. One of strategy in recommendation system is collaborative filtering with latent variable model. Latent variable model is recommendation method which analyze pattern of relationship among user and product. This thing can occurred because user and product have the same feature. Latent variable model which commonly use is matrix factorization.
One of optimist method in matrix factorization is gradient decsent method. But because many data and variation data, its will be overfitting and bias. Because of that, in this research will analyse accuracy of matrix factorization model based on gradient descent method with regularization and bias. Experiment is done by simulating computation to get optimal model parameter.
Based on experiment when 𝑘=5 and 𝜆1=0.05 matrix factorization model based on gradient descent method with regularization and bias had better accuracy than matrix factorization model based on gradient descent method with only regularization, it?s 0.93552 and 1.19219.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
T44814
UI - Tesis Membership  Universitas Indonesia Library
cover
Nethania Sonya Violencia Lasmaria
"Sistem rekomendasi kini telah menjadi fitur yang umum digunakan pada berbagai situs, termasuk situs katalog buku dan toko buku daring. Adanya sistem rekomendasi pada situs-situs tersebut berperan penting dalam proses pengambilan keputusan pengguna. Dua jenis sistem rekomendasi yang umum digunakan adalah content-based filtering dan collaborative filtering. Penelitian terdahulu menunjukkan bahwa statistical metrics bukan merupakan ukuran yang tepat untuk menentukan kualitas suatu sistem rekomendasi. Salah satu pendekatan lain adalah mengevaluasi sistem rekomendasi berdasarkan persepsi dari pengguna yang menggunakannya. Pada penelitian ini, dilakukan perbandingan antara persepsi pengguna terhadap content-based filtering dengan top-N recommendations dan collaborative filtering dengan matrix factorization menggunakan metode survei kuantitatif yang mengukur accuracy, diversity, novelty, perceived usefulnes, overall satisfaction dan use intention terhadap rekomendasi yang dihasilkan kedua jenis sistem rekomendasi. Hasil penelitian menunjukkan bahwa sistem rekomendasi content-based filtering memiliki accuracy, diversity, perceived usefulness, overall satisfaction dan use intention yang lebih tinggi daripada sistem rekomendasi collaborative filtering. Namun, tidak terdapat perbedaan nilai novelty yang signifikan antara sistem rekomendasi content-based filtering dan collaborative filtering.

Recommendation system is now a common feature used in various sites, including online book catalogs and bookshops. The existence of recommendation systems on these sites has an important role in users' decision-making processes. Two of the most commonly used types of recommendation systems are content-based filtering and collaborative filtering. Literature has shown that statistical metrics are not suitable to measure the quality of recommendation systems. Instead, a recommendation system can be evaluated based on its users’ perceived qualities. Through this research, a comparison of users’ perception of content-based filtering with top-N recommendations and collaborative filtering with matrix factorization is conducted with a quantitative survey method which evaluates accuracy, diversity, novelty, perceived usefulness, overall satisfaction and use intention of recommendations produced by both recommendation systems. The results suggest that the content-based recommendation system has higher accuracy, diversity, perceived usefulness, overall satisfaction and use intention than collaborative filtering ones. However, there is not any significant difference between the novelty values of content-based and collaborative filtering recommendation systems."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Widada
"Pesatnya perkembangan teknologi telah mengubah perdagangan konvensional menjadi sistem perdagangan modern. Agar e-commerce berhasil harus dikembangkan menggunakan sistem yang akurat. Salah satu metode pada pendekatan collaborative filtering yaitu latent variable models berdasarkan faktorisasi matriks. Jika setiap vector pu yang menyatakan ketertarikan pengguna ke-u terhadap variabel tersembunyi dan setiap vector qi yang menyatakan hubungan item i dengan variabel tersembunyi dapat ditentukan, maka tingkat ketertarikan antara semua pengguna u pada setiap item i dapat ditentukan. Untuk menghindari terjadinya overfitting proses update pu dan qi dilakukan menggunakan metode gradient descent dengan regularisasi. Penelitian ini menentukan parameter k (banyaknya variabel tersembunyi) dan parameter (nilai regularisasi) agar model optimal.

The rapid development of technology has changed the conventional trade into a modern trading system. In order for successful e-commerce must be developed using an accurate system. One method in collaborative filtering approach that is latent variable models based on matrix factorization. If any vector pu that expressed interest u user to a hidden variable and each qi vector expressing the relation item i with hidden variables can be determined, then the level of interest among all users u on every item i can be determined. To avoid overfitting the update process on pu vector and qi vector performed using gradient descent method with regularization. This study determines the parameter k (the number of hidden variables) and parameter (value regularization) that makes the model becomes optimal."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T45534
UI - Tesis Membership  Universitas Indonesia Library
cover
Billy Surya Putra
"Sistem rekomendasi adalah sebuah teknik untuk menyediakan saran terkait suatu hal yang dapat dimanfaatkan oleh pengguna. Saran dapat berupa produk maupun jasa yang ditawarkan. Saran yang diberikan adalah produk atau jasa yang belum pernah digunakan atau dibeli oleh pengguna tersebut. Sistem rekomendasi, khususnya dengan menggunakan K-Nearest Neighbor KNN , mencapai kesuksesan pada beberapa akhir tahun ini.
Penelitian ini akan diimplementasikan K-Nearest Neighbor pada komputasi terdistribusi yaitu MapReduce untuk merancang sistem rekomendasi dengan menggunakan Item Based Collaborative Filtering IBCF dan User Based Collaborative Filtering UBCF pada dataset Movielens 100k. Penelitian akan menggunakan beberapa komputasi penghitung kesamaan yaitu Cosine Based Similarity, Pearson Correlation Similarity dan Euclidean Distance.
Hasil percobaan yang didapat adalah algoritma Euclidean Distance menghasilkan performa terbaik dalam waktu proses dan nilai keakuratan. Pada pendekatan IBCF, Euclidean Distance membutuhkan waktu proses dengan rata-rata 13 sekon dan nilai korelasi sebesar 0.84. Sedangkan pada UBCF, Euclidean Distance membutuhkan waktu proses dengan rata-rata 32 sekon dan nilai korelasi sebesar 0.84.

Recommender system is a technique to provide suggestions related to a thing that can be used for user. Suggestions can be products and services offered. The advice given is a product or service that has never been used or purchase by the user. The recommendation system, especially by using K Nearest Neighbor KNN , achieving success in several year.
This research will be implemented K Nearest Neighbor at distributed process that called MapReduce to arrange system by using Item Based Collaborative Filtering IBCF and User Based Collaborative Filtering UBCF on Movielens 100k dataset. The research will use several techniques to compute similarities such as Cosine Based Similarity, Pearson Correlation Similarity and Euclidean Distance.
The result of the experiment is Euclidean Distance algorithm give the best performance in process time and correlation. In the IBCF approach, Euclidean Distance takes process around 13 seconds and correlation value is 0.84. And at UBCF, Euclidean Distance takes processing time around 32 seconds and correlation value is 0.84.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68737
UI - Skripsi Membership  Universitas Indonesia Library
cover
Indri Hapsari
"ABSTRAK

Model perencanaan perjalanan telah berkembang dari faktor kuantitatif yaitu pencapaian waktu tersingkat menjadi faktor kualitatif yaitu pencapaian kepuasan. Kepuasan ini didapatkan dari kunjungan ke sejumlah tempat yang dianggap penting, kritis, atau favorit sesuai lingkup model tersebut. Penerapan dalam bidang pariwisata akan membantu wisatawan dalam pembentukan rute perjalanan pariwisata yang layak dan berkualitas tinggi. Model yang dikembangkan pada penelitian ini adalah Team Orienteering Problem with Time Windows (TOPTW). Pada model awal dilakukan penyusunan rute dengan memperhatikan prioritas wisatawan, maksimum total waktu yang dimiliki wisatawan, lokasi awal yang sama dengan lokasi akhir, serta jam operasional destinasi wisata (time window). Penelitian perencanaan perjalanan wisata ini mengubah model awal dengan melakukan penyesuaian kebutuhan wisatawan yang belum terpenuhi dan mencapai tujuan kedua yaitu minimum total waktu yang dibutuhkan. Model usulan memperhatikan waktu kedatangan yang diinginkan wisatawan, lokasi awal dan akhir yang berbeda, serta toleransi waktu yang ditetapkan wisatawan terhadap jam buka dan jam tutup suatu destinasi, serta hari operasional destinasi wisata. Wisatawan juga dapat mengubah waktu kunjungan (service time), skor destinasi yang menunjukan tingkat kefavoritan, dan menentukan waktu kedatangan ke destinasi wisata.

            Metode yang digunakan bertujuan untuk mencari keseimbangan (equilibrium solution) antara hasil yang optimal dengan proses perhitungan yang lebih efisien. Metode pencarian hasil akan diawali dengan kontruksi heuristik untuk mengakomodasi destinasi favorit terlebih dahulu dalam rute, dilanjutkan dengan tahapan local search untuk mendapatkan pengaturan terbaik dari rute-rute tersebut. Metode yang digunakan adalah Iterated Local Search (ILS) yang disesuaikan, yaitu Adjusted ILS (AILS). AILS terdiri dari tahapan permutasi dan reversed untuk setiap rute, dan terakhir adalah perturbasi untuk semua rute yang terbentuk. Pada setiap tahapan akan dibandingkan total skor dan total waktunya, dan yang terbaik akan melanjutkan ke tahapan berikutnya. Setiap tahapan ini akan melalui diverifikasi untuk menjamin kelayakan hasil.

            Selain itu dilakukan perbandingan metode antara AILS dan metode metaheuristik lain seperti Multi-start Simulated Annealing (MSA), Simulated Annealing (SA), Artificial Bee Colony (ABC) dan ILS. Hasil dari uji statistik menyatakan adanya perbedaan hasil di antara metode AILS dan metode-metode lainnya. Metode AILS memiliki keunggulan lebih tingginya skor per destinasi yang berarti lebih banyak destinasi favorit yang dikunjungi yaitu rata-rata sebesar 26% untuk metode MSA, SA, dan ABC, dan 21% untuk metode ILS. Running time pada AILS lebih singkat 537% daripada metode MSA, SA dan ABC, dan lebih lama 42% dibandingkan metode ILS. Semua metode yang dibandingkan tidak memiliki total waktu seperti yang telah dilakukan dalam AILS. Setelah itu dibuat sistem rekomendasi bernama ROSTER (Routing System Recommendation)  untuk kemudahan penggunaan dan pemahaman hasil.


ABSTRACT

 


The travel planning model has expanded from quantitative factor with the achievement of the shortest time, into a qualitative factor with the achievement of satisfaction. The satisfaction is obtained from visiting a number of destinations that are considered important, critical, or favorite. Application in the tourism industry will help tourists to develop an appropriate and high-quality travel routes. The development model in this study is Team Orienteering Problem with Time Windows (TOPTW). In the initial model, route planning considers tourist priorities, the maximum total time owned by tourists, the same initial location as the final location, and the operational hours of each destination or time window. This research develop the initial model by adjusting more demand of tourists and achieve the second goal, the minimum total time. The proposed model consider arrival time of tourists, different initial and final locations, time tolerance from tourists to destination operational hours, and operational days of the destinations. Tourists can also adjust the time of visit or service time, destination scores that indicate the level of favorability, and determine the time of arrival to tourist destinations.

The method used aims to find a balancing (equilibrium solution) between optimal results with  more efficient running time. The method will begin with a heuristic construction to accommodate the favorite destinations in advance on the route, followed by the local search to get the best routes. The method used is modification of Iterated Local Search (ILS) and being Adjusted ILS (AILS). AILS consists of permutation and reversed stages for each route, and perturbation for all routes formed in previous stages. At each stage the total score and total time will be compared, and the best routes will proceed to the next stage. Each of these stages will be verified through to ensure the feasibility of the results.

A comparison method was conducted between AILS and other metaheuristic methods such as Multi-start Simulated Annealing (MSA), Simulated Annealing (SA), Artificial Bee Colony (ABC) and ILS. The results of the statistical test revealed differences in results between the AILS method and other methods. The AILS method has the advantage of higher scores per destination which means more favorite destinations visited are on average 26% for the MSA, SA, and ABC methods, and 21% for the ILS method. Running time on AILS is 537% shorter than MSA, SA and ABC methods, and 42% shorter than ILS method. All the previous methods do not have the minimum total time that was reached in AILS. A recommendation system named ROSTER (Routing System Recommendation) was made for user convenience.

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
D2714
UI - Disertasi Membership  Universitas Indonesia Library
cover
Muhammad Shofi Rosyadi
"Latar belakang penelitian ini didasari oleh isu-isu pilpres 2019 yang beredar secara masif di media sosial. Dari isu-isu tersebut muncul polarisasi dan membagi menjadi dua belah pihak yang saling berseberangan. Namun, pengguna pada dasarnya tidak disuguhkan informasi yang berimbang akibat dari sistem rekomendasi pada sosial media. Penelitian ini diharapkan dapat memperkaya kajian dampak media sosial khususnya pada kajian sistem rekomendasi dengan konteks di Indonesia.
Tesis ini mengkaji sistem rekomendasi yang dirancang oleh operator media sosial cenderung seragam atau selaras dengan pandangan politik pengguna saja. Fenomena tersebut adalah The Filter Bubbles dimana informasi yang beredar pada media sosial kita disaring hanya sesuai dengan pandangan pengguna itu sendiri. Polarisasi menjadi efek yang bisa dipengaruhi oleh sistem rekomendasi karena penerimaan informasi dari pengguna setelah melalui sistem kurasi berdasarkan personalisasi memunculkan berita seragam.
Penelitian ini menggunakan pendekatan kuantitatif dengan metode eksperimen. Hasil penelitian ini menunjukkan bahwa sistem rekomendasi membuat posisi polarisasi pengguna semakin ekstrim. Hal ini ditandai dengan semakin teguhnya opini dan pandangan politik yang dipegang oleh pengguna sebelumnya.

The background of this research is based on 2019 election issues that spread massively in social media. From these issues comes the polarization and divides into two opposing sides. However, users are basically not presented with balanced information as a result of the recommendation system on social media. This research is expected to enrich the study of social media impact, especially on study of recommendation system with context in Indonesia.
This thesis examines the recommendation system designed by social media operators tends to be uniform or aligned with the user's political views only. The phenomenon is The Filter Bubbles where the information circulating on our social media is filtered only in accordance with the user's own views. Polarization becomes an effect that can be influenced by the recommendation system because the acceptance of information from the user after going through a personalized curation system raises uniform news.
This research uses quantitative approach with experiment method. The results of this study indicate that the recommendation system makes the polarization position of users more extreme. This is marked by increasingly persistent opinions and political views held by previous users
"
Depok: Fakultas Ilmu Sosial dan Ilmu Politik Universitas Indonesia, 2018
T50255
UI - Tesis Membership  Universitas Indonesia Library
cover
Endaryono
"Sistem rekomendasi (recommendation system) terus dikembangkan khususnya pada aplikasi teknik analisis data dalam membantu pengguna on-line (user) menemukan produk (item) yang ingin mereka beli. Satu dari beberapa metode dalam sistem rekomendasi adalah collaborative filtering (CF) dengan pendekatan latent variable models berdasarkan faktorisasi matriks. Hubungan antara pengguna (users) dan produk (item) dalam collaborative filtering dapat disajikan dalam bentuk matriks rating R. Penelitian ini membahas metode collaborative filtering berbasis model faktorisasi matriks pada sistem rekomendasi.
Dalam faktorisasi matriks, permasalahan utamanya adalah mencari dua buah matriks Wm x k dan matriks Hk x m sehingga WH ≈ R dengan Rm x n. Akurasi dari model tercermin dari besarnya norm ║R-WH║ pada data testing. Terdapat beberapa teknik faktorisasi yang telah digunakan dalam CF. Dalam penelitian ini metode yang digunakan adalah faktorisasi matriks dengan metode gradient descent.
Berdasarkan eksperimen, parameter model yang optimal yang memenuhi fungsi optimasi diperoleh pada nilai k = 3 dengan learning rate 8 x 10-5. Akurasi model dihitung menggunakan root mean square error (RMSE) dan nilai RMSE model pada eksperimen ini adalah 0,9335.

Recommendation systems continue to be developed especially in the application of data analysis techniques in helping users on-line find a product (item) that they want to buy. One of several methods in collaborative filtering recommendation system is (CF) approach to latent variable models based on matrix factorization. The relationship between the user and product (item) in the collaborative filtering (CF) can be presented in the form of rating matrix R. This study discusses the collaborative filtering method based on matrix factorization model of recommendation systems.
In the matrix factorization, the main problem is to find two matrices Wmxk and Hk x m so that WH ≈ R with Rmxn. The accuracy of the model is reflected in the norm ║R-WH║ in the testing data. There are several techniques that have been used in the factorization method of collaborative filtering (CF). In this study the method used is matrix factorization with gradient descent methods.
Based on the experiments, the optimal model parameters that meet the optimization function values ​​obtained at k = 3 with a learning rate of 8 x 10-5. The accuracy of the model is calculated using the root mean square error (RMSE) and RMSE values ​​in experimental models is 0.9335.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
T32656
UI - Tesis Membership  Universitas Indonesia Library
cover
Arias, Jose J. Pazos
"This book aims to help readers to discover and understand the interplay among legal issues such as privacy, technical aspects such as interoperability and scalability, and social aspects such as the influence of affinity, trust, reputation and likeness."
Berlin: Springer, 2012
e20398673
eBooks  Universitas Indonesia Library
cover
Leandro Balby Marinho, editor
"In this book, we survey the most recent and state-of-the-art work about a whole new generation of recommender systems built to serve social tagging systems. The book is divided into self-contained chapters covering the background material on social tagging systems and recommender systems to the more advanced techniques like the ones based on tensor factorization and graph-based models."
New York: Springer, 2012
e20406466
eBooks  Universitas Indonesia Library
cover
Umar Ruswandi
"Tujuan dari penelitian ini adalah menguji akurasi dari metode faktorisasi matriks probabilitas (pmf) pada data rating film MovieLens. Dalam pmf, data ini dapat direprentasikan dalam bentuk matriks R. yang berukuran n x m, dimana n adalah banyaknya pengguna sedangkan m adalah banyaknya judul film. Keluaran dari model ini adalah berupa dua buah matriks W dan H. Dimana W adalah matriks fitur pengguna sedangkan H adalah matriks fitur film. Akurasi dari model tercermin dari besarnya norm Frobenius 'R-WH' pada data testing. Matriks W dan H dapat diestimasi dengan menggunkan Teorema Bayes. Berdasarkan Teorema ini, model yang baik adalah model yang memiliki probabilitas posterior maksimum. Dari eksperimen, kondisi tersebut dicapai saat parameter k=17 dan lambda=0.2 dengan RMSE=0.920661. Pada nilai RMSE tersebut model ini masuk kategori yang baik dalam memprediksi banyaknya genre dan skor kosong dalam matriks R.

The purpose of this study is to test the accuracy of the method of probabilistic matrix factorization (PMF) on MovieLens movie rating data. In PMF, this data can be represents by the sparse matrix R. size nxm, where n is the number of users, while m is the number of movie titles. The output of the model is in the form of two matrices W and H. Where W is the matrix of user features, while H is the matrix of films features. The accuracy of the model is reflected in the size of the Frobenius norm 'R-WH' in the data testing. Matrices W and H can be estimated by using Bayes theorem. Based on this theorem, a good model is a model that has a maximum posterior probability. From these experiments, the condition is achieved when the parameters k = 17 and lambda = 0.2 with RMSE = 0.920661. In this model, the RMSE values in the category of good in predicting the number of genre and empty scores in the matrix R."
Depok: Universitas Indonesia, 2012
T31552
UI - Tesis Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>