Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 93078 dokumen yang sesuai dengan query
cover
Fatimah
"Salah satu metode clustering yang banyak digunakan karena unggul dari sisi kestabilannya adalah metode Self Organizing Map. Pada tesis ini dibahas penggunaan metode SOM pada DNA Human Papillomavirus (HPV) yang menjadi penyebab utama penyakit kanker serviks, yaitu penyakit kanker yang menempati urutan pertama di negara berkembang. DNA HPV yang digunakan adalah sebanyak 18 buah yang diambil berdasarkan complete genome terbaru. Dengan menggunakan program berbasis opensource R, proses clustering berhasil mengelompokkan 18 tipe HPV ke dalam dua buah cluster berbeda, yang terdiri dari 2 tipe HPV di cluster pertama sementara 16 tipe HPV lainnya di cluster ke dua. Hasil analisis 18 tipe HPV adalah berdasarkan tingkat keganasannya, atau tingkat kesulitan dalam penyembuhannya. Dua di antara tipe HPV yang berada di cluster pertama tergolong jenis HPV jinak, sementara 16 tipe HPV yang berada di cluster ke dua tergolong jenis HPV ganas.

One of the most widely used clustering method, since it has advantage on its robustness is Self Organizing Map (SOM) method. This thesis discusses the application of SOM method on Human Papillomavirus (HPV) DNA which is a main cause of cervical cancer disease, the most dangerous cancer in developing countries. We use 18 types of HPV DNA based on the newest complete genome. By using open-source-based program R, clustering process can separate 18 types of HPV into two different clusters. There are two types of HPV in the first cluster while 16 others in the second cluster. The Analyzing result of 18 types HPV based on the malignancy of the virus (the difficultness to cure). Two of HPV types the first cluster can be classified as tame HPV, while 16 others in the second cluster are classified as vicious HPV.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T43535
UI - Tesis Membership  Universitas Indonesia Library
cover
Diyah Septi Andryani
"Clustering bertujuan untuk mengklasifikasikan pola yang berbeda ke dalam kelompok yang disebut cluster. Analisis gen dengan menggunakan metode clustering dinilai lebih akurat dibandingkan analisis nukleotida menggunakan penyejajaran DNA. Hybrid clustering pada tesis ini mengkombinasikan algoritma fuzzy c-means dan algoritma divisive mampu meningkatkan keakurasian jika dibandingkan pendekatan pengelompokan partitional tradisional. Algoritma divisive akan dijalankan pada step kedua setelah hasil clustering yang diperoleh dari pengelompokan partisi fuzzy c-means.
Penentuan jumlah cluster terbaik ditentukan dari nilai Indeks Davies Bauldin yang paling minimum. Sebanyak 1252 barisan DNA HPV Human papillomavirus diperoleh dari Genbank NCBI dengan proses melakukan ekstraksi ciri DNA, selanjutnya dilakukan normalisasi. Proses ekstraksi ciri, normalisasi, dan penerapan algoritma partisi fuzzy c-means dan divisive dalam metode hybrid clustering menggunakan bantuan program open source.
Pada hasil hybrid clustering level awal diperoleh jumlah cluster optimum sebanyak 3 cluster dengan nilai Indeks Davies Bouldin paling minimum adalah 0.9715919. Pada level ke-2 clustering didapatkan cluster ke-1 terbagi atas 9 sub cluster dengan nilai IDB minimum adalah 0.8909797. Cluster ke-2 terbagi atas 2 sub cluster dengan nilai IDB minimum adalah 0.7650508. Cluster 3 terbagi atas 2 sub cluster dengan nilai IDB minimum adalah 0.9112528. Nilai IDB pada level kedua selalu lebih kecil dibanding nilai IDB pada level 1. Hal ini mengindikasikan bahwa hybrid clustering memberikan hasil yang lebih baik terhadap hasil clustering.

Clustering aims to classify the different patterns into groups called clusters. Analysis gene by using clustering method is considered more accurate than analysis of nucleotide using DNA alignment. In this thesis, hybrid clustering algorithm which combines fuzzy c means and algorithm divisive will be improve accuracy when compared to partitional clustering. Divisive algorithms will applied on second level after clustering partition using fuzzy c means.
To find the best number of clusters is determined using the minimum value of Davies Bouldin Index DBI of the cluster results. The data is 1252 sequences of HPV DNA sequences obtained from Gen Bank Database in the National Centre for Biotechnology Information NCBI at http www.ncbi.nlm.nih.gov in FASTA format. The data is converted into numerical form through feature extraction using n mers frequency.
The results on first level hybrid clustering obtained the optimum cluster divided into three clusters with the value of the minimum Davies Bouldin Index is 0.9715919. Morever, DBI values after implementing the second step of clustering are always producing smaller IDB values compare to the results of using first step clustering only. This condition indicates that the hybrid approach in this study produce better performance of the cluster results, in term its DBI values.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47171
UI - Tesis Membership  Universitas Indonesia Library
cover
Khoirul Umam
"DNA adalah salah satu pembawa informasi genetik pada makhluk hidup. Sequencing dan clustering barisan DNA telah menjadi pekerjaan utama dan rutin dalam dunia biologi molekuler, khususnya dalam bidang terapan bioinformatika. Secara umum metode clustering dapat dibedakan menjadi dua, yaitu hirarki clustering dan partisi clustering. Penelitian ini menggabungkan dua metode clustering yaitu K-Means partisi clustering pada Level 1 dan DIANA hirarki clustering pada Level 2, oleh karena itu disebut Two-Level Hybrid Clustering. Proses awal dimulai dengan mengumpulkan barisan DNA HPV yang diperoleh dari NCBI National Centre for Biotechnology Information, Ekstraksi Ciri, dan Normalisasi. Kemudian melakukan proses clustering menggunakan algoritma K-Means pada Level 1 dan algoritma DIANA pada Level 2. Untuk menghitung jarak genetik antar barisan DNA HPV digunakan persamaan Euclidian Distance. Dan validitas klaster yang digunakan untuk menentukan banyaknya klaster yang optimum adalah Indeks Davies-Bouldin IDB. Hasil penerapan Two-Level Hybrid Clustering pada 1252 barisan DNA HPV adalah data dikelompokan menjadi 4 klaster dengan nilai IDB yaitu 0.859154564. Semua perhitungan dan proses clustering menggunakan software R.

DNA is one of the carrier of genetic information in living organisms. Sequencing and clustering DNA sequences has become the key and routine activitis in the molecular biology, in particular on bioinformatics applications. There are two type of clustering, hierarchical clustering and partitioning clustering. In this paper, we combine two type clustering proccesses including K Means partitioning clustering on Level 1 and DIANA hierarchical clustering on Level 2, therefore it called Two Level Hybrid clustering. The beginning of process is started with collecting DNA sequences of HPV from NCBI National Centre for Biotechnology Information, Characteristics Extraction, and Normalization. The next step is clustering by implementation K Means algorithm on Level 1 and DIANA algorithm on Level 2. To calculate the genetic distance we use Euclidian Distance. Moreover, in validating cluster results in order to get optimum number of clusters, we use Davies Bouldin Index DBI. The result of implementation of Two Level Hybrid Clustering on 1252 sequences of HPV is the data clustered into 4 clusters with minimal IDB value is 0.859154564. All calculating and clustering process in this paper using software R.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47109
UI - Tesis Membership  Universitas Indonesia Library
cover
Septian Wulandari
"Sejak adanya penemuan tentang struktur DNA yang berupa double helix, terdapat perkembangan tentang interaksi kompleks yang dibutuhkan untuk clustering (mengelompokkan) DNA menjadi clusters (kelompok-kelompok) yang memiliki kesamaan sifat ataupun fungsinya. Clustering DNA dapat dilakukan dengan metode partisi maupun metode hirarki. Dua metode tersebut dapat dipadukan dengan melakukan tahap partisi dan hirarki secara bergantian yang dikenal dengan nama HOPACH clustering. Tahap partisi dapat dilakukan dengan algoritma SOM, PAM, dan K-Means. Algoritma SOM dipilih karena menggunakan metode unsupervised learning dan efisien untuk digunakan pada data yang besar. Proses partisi dilanjutkan dengan proses ordering kemudian dilakukan collapsing dengan proses agglomerative, sehingga hasil clustering yang diperoleh menjadi lebih akurat.
Penentuan cluster utama dilakukan dengan menghitung nilai kehomogenan hasil clustering menggunakan MSS (Mean Split Silhoutte). Kriteria penentuan cluster utama adalah pilih nilai MSS yang terkecil. Barisan 136 DNA EVD (Ebola Virus Disease) diperoleh dari Genbank NCBI dengan proses melakukan ekstraksi ciri DNA, selanjutnya melakukan normalisasi, dan dilanjutkan dengan menghitung jarak genetik menggunakan Jarak Euclidean. Matriks jarak genetik dapat dijadikan dasar untuk melakukan partisi serta clustering dengan menggunakan algoritma partisi SOM dalam metode HOPACH clustering. Proses ekstraksi ciri, normalisasi, dan penerapan algoritma partisi SOM dalam metode HOPACH clustering menggunakan bantuan program open source . Pada hasil clustering penerapan algoritma partisi SOM dalam metode HOPACH clustering diperoleh 9 cluster dengan nilai MSS sebesar 0,50280. Cluster yang dihasilkan dapat diidentifikasikan berdasarkan spesies dan tahun pertama kali mewabah.

Since the discovery of DNA structure in form of double helix, there is a development about the complex interaction required, DNA clustering into clusters which have the same features or functions. DNA clustering can be done by applying partitional or hierarchical method. Those two methods can be combined by doing partitional and hierarchical stage alternately known as HOPACH clustering. The partitional stage can be done by using SOM Algorithm, PAM, and K-Means. SOM algorithm is chosen because it uses unsupervised learning method and efficient to be used for large data. The partitional process is continued by ordering process and then performed collapsing with agglomerative process, so that the clustering result which is obtained will be more accurate. The determination of the main cluster done by calculating homogeneous value of the clustering result uses MSS (Mean Split Silhouette).
The determination criteria of the main cluster is choosing the smallest MSS value. 136 sequences of DNA EVD (Ebola Virus Disease) are obtained from NCBI Genbank by applying extraction of DNA sequence, after that doing normalization, and then calculating the genetic distance use Euclidean Distance. Genetic distance matrix can be used as a basis to do partitional and clustering by implementation SOM partitioning algorithm in HOPACH clustering method. The extraction of DNA sequence, normalization, and the implementation of SOM partitioning algorithm in HOPACH clustering method use open source program . On the result of implementation SOM partitioning algorithm in HOPACH clustering method retrieved 9 clusters with MSS value of 0,50280. The cluster which is obtained can be identified according to species and the first year of becoming an epidemic.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
T44913
UI - Tesis Membership  Universitas Indonesia Library
cover
Rediani Pramudita
"Penggunaan gas bumi yang merupakan non-renewable energy, perlu lebih diefisienkan. Hal tersebut menyebabkan segmentasi pelanggan gas di sektor industri penting untuk dilakukan, agar dapat dibentuk strategi pemasaran atau penetapan tarif yang tepat. Penelitian ini dilakukan di PT Perusahaan Gas Negara (PGN) dengan menggunakan salah satu metode data mining, yaitu Self-Organizing Map (SOM), untuk dihasilkan klasterisasi pelanggan berdasarkan karakteristik penggunaannya, sebagai acuan dalam pembentukan segmentasi pelanggan gas bumi. Variabel area, jenis pelanggan, sektor industri, rata-rata penggunaan, standar deviasi penggunaan, dan total penyimpangan menjadi variabel yang digunakan dalam penelitian ini. Hasilnya adalah terdapat 37 klaster dan 9 segmen yang terbentuk, dari 838 data pelanggan yang digunakan dalam penelitian ini. Kesembilan segmen ini menggambarkan secara umum karakteristik pelanggan gas bumi di PT PGN.

The usage of the natural gas which is non-renewable energy, needs to be more efficient. It also results the customer segmentation is the necessary thing to do, in order to set up a marketing strategy or a determination of the appropriate tariff. This research was conducted at PT PGN using one of the methods of data mining, i.e. Self-Organizing Map (SOM), that resulted the clustering of customer based on the characteristic of its user, as a reference to create the customer segmentation of natural gas user. Variable of area, type of customer, the industrial sector, the average usage, standard deviation of the usage, and the total deviation become the variable which are used in this research. It results 37 cluster and 9 segment, from 838 customer data which are used in this research. These 9 segments illustrate the general characteristic of the natural gas customer of PT PGN.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59209
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Stefanus Sutopo
"ABSTRACT
Kanker serviks adalah salah satu penyakit malignansi yang cukup berbahaya, dengan 500.000 kejadian baru dan 240.000 kematian setiap tahunnya. Walau etiologi intinya, human papillomavirus (HPV), telah diketahui sejak tahun 1990-an, sepertinya terdapat kofaktor-kofaktor yang mendorong kejadian penyakit ini. Salah satu yang menarik untuk diteliti adalah Epstein-Barr virus (EBV). Pada penelitian ini, 20 sampel swab serviks dari pasien dengan kanker serviks (positif HPV risiko tinggi), sementara 48 sampel swab serviks dari pasien dengan penyakit non-kanker serviks (negatif HPV). EBV dideteksi menggunakan uji real time PCR, sementara level DNA EBV dihitung berdasarkan persamaan Livak. Hubungan infeksi EBV sebagai kofaktor terhadap infeksi HPV dianalisis menggunakan statistik. Secara kualitatif, ditemukan bahwa populasi subyek positif EBV memiliki risiko sekitar 2,388 kali lebih mungkin menderita infeksi HPV dibandingkan populasi negatif EBV. Secara kuantitatif, jumlah DNA EBV pada populasi subyek dengan kanker serviks dan positif EBV sekitar 71 kali lebih tinggi dibandingkan dengan populasi subyek dengan kanker serviks dan negatif EBV. Secara statistik, hubungan infeksi EBV sebagai kofaktor terhadap infeksi HPV secara kualitatif maupun kuantitatif tidak bermakna (p > 0,05). Penelitian dengan populasi yang lebih besar dan multicenter dibutuhkan untuk menyokong hasil penelitian ini.

ABSTRACT
Cervical cancer is one of the most dangerous malignant diseases, with around 500,000 new cases and 240,000 deaths each year. Although its main etiology, HPV, has been associated clearly with it since the 1990s, there appears to be various cofactors driving the pathophysiology of this disease, with one of the most interesting ones being EBV. In this study, 68 cervical swab samples with known HPV DNA content is analysed for the presence of EBV DNA. 2-by-2 table analytic statistics with various methods are then conducted to understand the connections between these two pathogens and the patients disease. It is found that in this sample population, patients with HPV are around 2.388 times more likely to be infected by EBV. The amount of EBV DNA in the case population is also found to be around 71 times more than in the control population. However, both results are statistically insignificant (p > 0.05). In conclusion, the results found shows interesting proof for the complicicity of EBV in the pathophysiology of cervical cancer, although statistically insignificant. Studies with a larger population and multicentered approach are needed to support the findings of this study."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Abdul Rivai
"ABSTRAK
Clustering adalah metode pembagian data ke dalam kelompok homogen yang disebut cluster. Spectral clustering merupakan salah satu algoritma clustering modern yang memiliki kelebihan dapat mereduksi dimensi data. Pada penelitian ini metode partisi yang diterapkan pada spectral clustering yaitu self-organizing map SOM . SOM memiliki keunggulan tahan terhadap data noise dan outlier, serta SOM dapat mengatasi dataset yang besar. Penelitian ini bertujuan untuk mengimplementasikan spectral clustering-self organizing map pada data microarray ekspresi gen karsinoma yang terdiri dari 7457 gen dari 18 sampel normal dan 18 sampel penderita kanker karsinoma. Sebelum dilakukan spectral clustering-SOM, data microarray ekspresi gen karsinoma dinormalisasi menggunakan normalisasi min-max. Spectral clustering-SOM dilakukan dengan tahapan-tahapan berikut: menghitung matriks similaritas W , menghitung matriks laplacian ternormalisasi Lsym , menghitung eigenvalue dari Lsym, membentuk matriks U yang terdiri dari k eigenvector terkecil, membentuk vektor unit Unorm dari vektor baris pada matriks U sehingga vektor unit memiliki norm 1, mengelompokkan gen pada matriks Unorm menggunakan SOM dan menghitung nilai indeks Davies-Bouldin IDB k . Penentuan jumlah cluster terbaik berdasarkan nilai indeks Davies-Bouldin yang paling minimum. Dengan menggunakan perangkat lunak R, hasil penelitian ini menunjukkan bahwa data microarray ekspresi gen karsinoma terbagi menjadi dua cluster dengan nilai indeks Davies-Bouldin yaitu 0,5843429. Berdasarkan indeks Davies-Bouldin, hasil clustering menggunakan metode spectral clustering-SOM lebih baik daripada hasil clustering yang menggunakan metode SOM tanpa spectral clustering.

ABSTRACT
Clustering is a method the dividing data into a homogeneous group called a cluster. Spectral clustering is one of the modern clustering algorithms that has the advantage of reducing dimensions of data. In this study the partitioning method applied to spectral clustering is self organizing map. SOM has the advantage of robust to noise and outlier, and SOM can handle large datasets. This study aims to implement spectral clustering self organizing map on microarray data of carcinoma gene expression consisting of 7457 genes from 18 normal samples and 18 samples of carcinoma cancer patients. Before spectral clustering SOM, the microarray data of carcinoma genes expression was normalized using min max normalization. The Spectral clustering SOM is done by the following steps calculate similarity matrix W , calculate the normalized Laplacian matrix Lsym , calculate the eigenvalue of Lsym , forming a vector unit Unorm of the row vector of the matrix U so that the vector unit has norm 1, grouping the genes in the matrix Unorm and calculate the Davies Bouldin index values IDB k . Determination of the best number of clusters based on the minimum value of the Davies Bouldin index. By using software R, the result of this research is microarray data of carcinoma gene expression is divided into two clusters with Davies Bouldin index value is 0.5843429. Based on the Davies Bouldin index values, clustering using spectral clustering SOM is better than clustering using only SOM method without spectral clustering."
2017
T48650
UI - Tesis Membership  Universitas Indonesia Library
cover
I Gde Angga Surjana
"Pengelompokan nasabah asuransi berdasarkan Self-Organizing Map (SOM) dan analisis cluster hierarki I Gde Angga Surjana (0399010211) Self-Organizing Map (SOM) merupakan metode pengelompokan yang dapat digunakan untuk memvisualisasikan sekaligus mengeksplorasi karakteristik data. Kombinasi antara SOM dan analisis cluster hierarki dapat menjadi metode pengelompokan yang efektif apabila digunakan pada data yang berukuran relatif besar, seperti pada data nasabah dari suatu perusahaan asuransi. Kedua metode ini digunakan untuk membentuk kelompok nasabah berdasarkan produk asuransi yang diikuti agar perusahaan dapat mengidentifikasi kebutuhan para nasabahnya akan asuransi. Hasil pengelompokan dari kedua metode ini adalah tiga kelompok utama, yaitu kelompok nasabah yang sadar asuransi, kelompok nasabah asuransi jiwa dan kelompok nasabah satu jenis asuransi tertentu. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2005
S27606
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lumbantobing, Esther Widya Impola
"Self Organizing Map (SOM) adalah metode pengelompokan yang berguna untuk mengeksplorasi karakteristik data secara visual. Pada penelitian ini metode SOM digunakan untuk mengelompokkan kecamatan-kecamatan di Pulau Sumatera berdasarkan karakteristik penggunaan fixed broadband di masing-masing wilayah tersebut. Melalui pengelompokan dengan metode SOM, didapatkan 3 kelompok kecamatan yaitu: kecamatan dengan penggunaan fixed broadband rendah, menengah dan tinggi. Agar hasil pengelompokan dapat dilihat secara detail, maka hasil SOM dipetakan ke dalam Sistem Informasi Geografis. Hasil visualisasi ini adalah peta penggunaan fixed broadband di Pulau Sumatera yang dapat digunakan untuk menggambarkan bagaimana kondisi penggunaan fixed broadband di Pulau Sumatera.

Self Organizing Map (SOM) is a powerful clustering method to explore the characteristics of the data visually. In this study, SOM is used to cluster the subdistrict regions in Sumatera based on their characteristics of fixed broadband application in each region. Through clustering with SOM, three distinct clusters of those subdistricts are found. Cluster 1 consists of subdistricts with low fixed broadband application, Cluster II consists of subdistricts with medium fixed broadband application and the last consists of subdistricts with high application in fixed broadband. In order to get a geographical representation of the clusters, the results from SOM are visualized into Geographic Information System. From this visualization, a fixed broadband map of Sumatera is created of which can be used to describe the conditions of fixed broadband application in Sumatera."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S59288
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>