Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 191103 dokumen yang sesuai dengan query
cover
Chyntia Megawati
"ABSTRAK
Perkembangan pesat Teknologi Informasi dan Komunikasi (TIK) telah membuatnya menjadi satu bagian penting dalam kehidupan sehari-hari. Sektor pemerintah di Indonesia merupakan salah satu pihak yang telah mencoba memanfaatkan TIK dengan membuat sebuah situs untuk berkomunikasi secara dua arah dengan masyarakat (e-Governement) dalam bentuk LAPOR! (Layanan Aspirasi dan Pengaduan Online Rakyat). Laporan yang disampaikan masyarakat bisa menjadi masukan penting bagi pemerintah untuk membantu pembangunan dan peningkatan pelayanan publik. Oleh karena itu, penelitian ini menggunakan metode text mining untuk menganalisis data tekstual yang berupa opini atau keluhan dengan mengklasifikasikannya menjadi beberapa kelas dan kemudian data set setiap kelas akan dikelompokkan lagi menjadi beberapa topik khusus (cluster). Hasil penelitian menunjukkan bahwa laporan terkait kemiskinan memiliki jumlah terbanyak dengan topik mayoritas yang dibahas adalah mengenai beberapa jenis bantuan sosial seperti KPS (Kartu Perlindungan Sosial) dan BLSM (Bantuan Langsung Sementara Masyarakat) yang tidak didistribusikan dengan baik atau tidak tepat sasaran

ABSTRACT
The rapid development of Information and Communication Technology (ICT) has made it as one important part in daily life. The government sector in Indonesia is one of those who have tried to use ICT in order to build such a two way communication site with citizens (e-governement) by creating LAPOR! (Layanan Aspirasi dan Pengaduan Online Rakyat). All kind of reports that conveyed by citizens could be an important input for the government to assist the development and improvement of public services. Hence, this reaserch analyze citizen’s textual reports data by using text mining method. The textual data will be classified into several classes and then the data set in each class will be clustered into several specific topics (clusters). The results showed that poverty is the most reported category with the majority of its topics are about some kind of social aids such as KPS (Kartu Perlindungan Sosial) and BLSM (Bantuan Langsung Sementara Masyarakat) that are not well distributed or reached out the wrong target."
2015
S59262
UI - Skripsi Membership  Universitas Indonesia Library
cover
Millati Indah
"Salah satu misi pembangunan adalah mewujudkan kualitas hidup manusia Indonesia yang tinggi, maju, dan sejahtera, dengan salah satu agenda prioritasnya meningkatkan kualitas hidup manusia Indonesia. Untuk mengevaluasi terlaksananya misi dan agenda prioritas tersebut diperlukan indikator yang terukur. Hasil evaluasi tersebut dapat dijadikan pertimbangan dalam membuat kebijakan untuk memperbaiki tingkat kesejahteraan.
Salah satu pengukuran yang dapat digunakan adalah Indikator Kesejahteraan Rakyat (Inkesra) yang disusun Badan Pusat Statistik (BPS) yang diolah dari data Survei Sosial Ekonomi Nasional (SUSENAS). Indikator ini mengukur kesejahteraan dengan menggunakan pendekatan kebutuhan dasar (basic needs).
Untuk mengukur perubahan tingkat kesejahteraan kabupaten/kota, perlu dilakukan analisis perpindahan cluster dari periode ke periode. Salah satu metode yang dapat digunakan untuk melakukan clustering adalah Self-organizing Maps (SOM). Hasil clustering dengan SOM kemudian dapat dianalisis menggunakan Relative Density Self-Organizing Maps (ReDSOM).
Variabel yang digunakan pada penelitian ini sebanyak 22 variabel dengan jumlah record 497 kabupaten/kota. Data yang dibandingkan adalah data tahun 2011 dan 2014. Dari hasil penelitian ini terdapat enam cluster pada tahun 2011 dan tujuh cluster pada tahun 2014. Variabel yang berubah secara signifikan pada sebagian besar perpindahan cluster adalah Angka Partisipasi Sekolah.

One of the development goal is to improve Indonesian people’s quality of life including welfare. A measurable indicator is needed to evaluate the realisation of the goal. The evaluation results can be used to make beter policy to improve welfare.
In Indonesia we can use Welfare Indicator (Indikator Kesejahteraan Rakyat/Inkesra) to measure welfare. This indicator is based on basic needs. This indicator is processed from SUSENAS.
To measure welfare improvement, we need to analyze cluster change over periods. A method that can be used clustering is Self-organizing Maps (SOM). Based on clustering result of data from different period, we can analyze cluster change.
This research used 22 variables and 497 records. The result of this research is regencies/municipalities in 2011 can be divided into six clusters and seven clusters in 2014. Variable that changed significantly in most of migrated clusters is School Participation.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2016
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Satrio Wibowo
"Masalah kependudukan di Indonesia pada hakekatnya menyangkut tiga aspek yaitu aspek kuantitas, aspek kualitas dan aspek mobilitas. Saat ini dari aspek kuantitas, Indonesia memiliki jumlah penduduk yang sangat besar yang mencapai angka 237,6 juta jiwa pada tahun 2010. Badan Kependudukan dan Keluarga Berencana Nasional (BKKBN) sebagai lembaga yang melaksanakan pengendalian penduduk dan menyelenggarakan keluarga berencana tidak dapat memenuhi target jumlah peserta KB sebesar 65% dari wanita usia subur berstatus menikah.
Penelitian ini melakukan clustering kabupaten/kota di Indonesia berdasarkan capaian program keluarga berencana dengan tujuan untuk mengetahui karakteristiknya. Variabel yang digunakan pada penelitian ini sebanyak 21 variabel yang diturunkan dari indicator kinerja BKKBN dan factor yang mempengaruhi penggunaan kontrasepsi yang dikemukakan oleh Berthrand.
Metode clustering yang digunakan dalam penelitian ini adalah data mining dengan menggunakan algoritma Self-Organizing Maps (SOM). Hasil dari penelitian ini menunjukkan bahwa teknik data mining clustering dengan algoritma SOM, berhasil mengelompokkan Indonesia ke dalam enam klaster pada data set tahun 2010, yang kemudian dilakukan identifikasi karakterristik wilayah tersebut sesuai dengan variabel yang mencirikan kondisi wilayahnya. Kondisi tahun 2010 ini digunakan sebagai dasar untuk melihat perkembangan capaian program keluarga berencana tiap tahunnya pada periode tahun 2010-2013.
Perbandingan data set antar tahun pada periode tahun 2010 sampai tahun 2013 dengan menggunakan relative denstity mampu secara otomatis mendeteksi perubahan struktur klaster berupa klaster yang menghilang, muncul, membelah, bergabung, membesar, dan mengecil dari klaster sebelumnya. Perpindahan klaster ini dapat digunakan untuk mendeteksi perubahan hasil capaian program keluarga berencana serta memberikan rekomendasi program berdasarkan hasil capaian program keluarga berencana.

Indonesian population’s problem is to three aspects ; quantity, quality, and mobility. Currently from quantity aspect, Indonesia has 237,6 million people in 2010. National Population and Family Planning Board (BKKBN) as an institution which controlling population and administering family planning unable to meet the 65% birth control target from married fertile woman.
This research conducted clustering in district / cities in Indonesia based on the family planning program performance with a purpose to know the characteristics. 21 Variables used for this research variable derived from BKKBN performance indicator and factor that affects the use of contraception, presented by Berthrand.
Clustering methods used in research is data mining with algorithm Self-Organizing Maps ( SOM ).The result of the research indicated that data mining clustering with algorithms SOM technic managed to classify Indonesia into six cluster on 2010 data set, then conduct region identification based on variable that characterizes their area condition. The 2010 condition used as a basic to predicts family planning program developments annually in the period 2010-2013.
Comparative data set between 2010-2013 period using relative density could automatically detect structure of cluster change that were disappearing, emerging, splitting, merging, enlarging, and shrinking from previous cluster. Cluster displacement can be used to detect result changes from the family planning program and give recommendation based on the family planning program result.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2016
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
I Gde Angga Surjana
"Pengelompokan nasabah asuransi berdasarkan Self-Organizing Map (SOM) dan analisis cluster hierarki I Gde Angga Surjana (0399010211) Self-Organizing Map (SOM) merupakan metode pengelompokan yang dapat digunakan untuk memvisualisasikan sekaligus mengeksplorasi karakteristik data. Kombinasi antara SOM dan analisis cluster hierarki dapat menjadi metode pengelompokan yang efektif apabila digunakan pada data yang berukuran relatif besar, seperti pada data nasabah dari suatu perusahaan asuransi. Kedua metode ini digunakan untuk membentuk kelompok nasabah berdasarkan produk asuransi yang diikuti agar perusahaan dapat mengidentifikasi kebutuhan para nasabahnya akan asuransi. Hasil pengelompokan dari kedua metode ini adalah tiga kelompok utama, yaitu kelompok nasabah yang sadar asuransi, kelompok nasabah asuransi jiwa dan kelompok nasabah satu jenis asuransi tertentu. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2005
S27606
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Nur Ichsan
"Saat ini, Indonesia menempati peringkat kedua sebagai produsen karet terbesar di dunia, menyumbang sekitar 29,8% dari kebutuhan global. Namun, produksi karet di Indonesia mengalami penurunan dari tahun ke tahun, salah satu faktornya adalah serangan penyakit gugur daun yang disebabkan oleh jamur Pestalotiopsis sp. Pada tahun 2021, luas perkebunan karet yang terkena penyakit mencapai 30.328,84 hektar dan tanaman yang terinfeksi oleh penyakit tersebut mengalami penurunan produksi lateks hingga 30%. Penyakit ini menyerang daun dengan gejala pembentukan bercak berukuran 0,5-2 cm yang menyebabkan nekrosis dan gugur. Penklasifikasian tingkat keparahan penyakit Pestalotiopsis sp. secara morfologi melalui pengamatan jumlah bintik dan warna pada daun karet membutuhkan waktu dan tenaga besar, terutama karena luasnya perkebunan yang terinfeksi. Oleh karena itu, penggunaan metode machine learning diusulkan untuk mengurangi waktu dan usaha yang dibutuhkan dalam menklasifikasi penyakit gugur daun akibat jamur Pestalotiopsis sp. Pada penelitian ini, model machine learning digunakan untuk mengklasifikasi 5 kelas tingkat keparahan penyakit Pestalotiopsis sp. yaitu tingkat 0 (sehat), tingkat 1 (terinfeksi ringan), tingkat 2 (terinfeksi sedang), tingkat 3 (terinfeksi parah), dan tingkat 4 (terinfeksi sangat parah). Dataset yang digunakan adalah citra daun tanaman karet yang diperoleh dari Pusat Penelitian Karet Sembawa. Model machine learning menerima input data citra daun tanaman karet, lalu citra disegmentasi menggunakan k-mean clustering. Data yang telah tersegmentasi kemudian diekstraksi dengan fitur warna hue, saturation, dan value (HSV) dan fitur jumlah bintik dengan metode contour detection menggunakan Suzuki’s contour algorithm. Selanjutnya, fitur-fitur ini diklasifikasikan menggunakan Support Vector Machine (SVM) tipe one vs rest multiclass classification dan Grid Search Cross Validation dengan 5 fold untuk menemukan hyperparameter terbaik untuk SVM. Hyperparameter terbaik adalah kernel radial basis function dengan C=100. Berdasarkan hasil percobaan sebanyak 5 kali, diperoleh kesimpulan bahwa model dengan akurasi tertinggi adalah model yang menggunakan fitur warna dan jumlah bintik dengan nilai rata-rata akurasi sebesar 81,86% dan nilai rata-rata Cohen’s kappa statistic sebesar 0,77 yang artinya model mampu mengklasifikasi data citra daun tanaman karet dengan cukup baik.

Currently, Indonesia ranks as the second largest rubber producer in the world, contributing about 29.8% of global demand. However, rubber production in Indonesia has decreased from year to year, one of the factors is the attack of leaf fall disease caused by the fungus Pestalotiopsi sp. In 2021, the area of rubber plantations affected by the disease reached 30,328.84 hectares with infected plants have a 30% decrease in latex production. The disease attacks the leaves with symptoms of spot formation measuring 0.5-2 cm which causes necrosis and fall. Detecting the severity of Pestalotiopsis sp. morphologically through the observation of the number of spots and colors on rubber leaves requires a lot of time and energy, especially due to the large area of infected plantations. Therefore, the use of machine learning methods is proposed to reduce the time and effort required in classifying leaf fall disease caused by the fungus Pestalotiopsis sp. In this study, a machine learning model is used to classify 5 classes of Pestalotiopsis sp. disease severity, namely level 0 (healthy), level 1 (mild infected), level 2 (moderate infected), level 3 (severe infected), and level 4 (very severe infected).  The dataset used is an image of rubber plant leaves obtained from the Sembawa Rubber Research Center. The machine learning model received input data of rubber plant leaf images, then the image is segmented using k-mean clustering. The segmented data will then be extracted with hue, saturation, and value (HSV) color features and the number of spots feature with the contour detection method using Suzuki’s contour algorithm.  In this study, the performance evaluation used is accuracy and Cohen's kappa statistic. Furthermore, these features are classified using Support Vector Machine (SVM) type one vs rest multiclass classification and Grid Search Cross Validation with 5 folds to find the best hyperparameter for SVM. The best hyperparameter is the radial basis function kernel with C=100. Based on the results of 5 experiments, it is concluded that the model with the highest accuracy is a model that uses color and the number of spots features with an average accuracy value of 81.86% and an average Cohen's kappa statistic value of 0.77, which means that the model is able to classify rubber plant leaf image data quite well."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dilla Fadlillah Salma
"Kepemilikan dan penggunaan kendaraan mobil memiliki berbagai risiko negatif, seperti terjadinya kecelakaan. Untuk mengurangi beban risiko tersebut, perusahaan menjual produk asuransi mobil. Asuransi mobil merupakan salah satu produk perusahaan asuransi kendaraan yang bertujuan sebagai upaya perlindungan pemilik kendaraan mobil dari kerugian finansial yang terjadi pada kendaraan yang diasuransikannya. Untuk menawarkan produk asuransi, beberapa perusahaan menggunakan teknik penjualan dengan cara cold calling. Teknik penjualan tersebut akan lebih efektif menjual produk asuransi jika terlebih dahulu data nasabah calon pembeli asuransi diprediksi atau diklasifikasi ke dalam kelas membeli atau tidak membeli.
Pada skripsi ini, dilakukan klasfikasi dengan metode Support Vector Machine (SVM), Random Forest (RF),dan Logistic Regression (LR) dengan implementasi metode seleksi fitur One Dimensional Naïve Bayes Classifier (1-DBC). Data yang diperoleh berjumlah 4000 data dengan total 18 fitur. Diperoleh hasil bahwa akurasi SVM lebih tinggi dibandingkan dengan kedua metode lainnya. Selain itu, mplementasi metode seleksi fitur telah berhasil meningkatkan akurasi dari metode Random Forest, dan Logistic Regression. Dengan implementasi 1-DBC, ketiga metode klasifikasi memperoleh hasil akurasi tertinggi pada penggunaan 15 fitur.

Ownership and use of car vehicles have a variety of negative risks, such as accidents. To reduce the risk burden, the company sells car insurance products. Car insurance is one of the products of a vehicle insurance company that aims to protect vehicle owners from financial losses that occur on their insured vehicles. To offer insurance products, some companies use sales techniques using cold calling. The sales technique will be more effective in selling insurance products if first the prospective customer buyer data is predicted or classified into the class of buying or not buying.
In this paper, classification is done using the method of Support Vector Machine (SVM), Random Forest (RF), and Logistic Regression (LR) by implementing the One Dimensional NaA-ve Bayes Classifier (1-DBC) feature selection method. The data obtained amounted to 4000 data with a total of 18 features. The results were obtained that the accuracy of SVM was higher compared to the other two methods. In addition, the implementation of the feature selection method has succeeded in increasing the accuracy of the Random Forest, and Logistic Regression. With the implementation of 1-DBC, the three classification methods obtained the highest accuracy results with the use of 15 features.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Theresia Veronika Rampisela
"Skizofrenia adalah gangguan jiwa yang serius dan kronis. Penyakit ini ditandai dengan gangguan dalam pemikiran, persepsi, dan tingkah laku. Karena gangguan-gangguan ini dapat memicu penderita Skizofrenia untuk bunuh diri atau mencoba bunuh diri, penderita Skizofrenia mempunyai usia harapan hidup yang lebih rendah dari populasi umum. Skizofrenia juga sulit untuk didiagnosis karena belum ada tes secara fisik untuk mendiagnosisnya dan gejala-gejalanya sangat mirip dengan beberapa gangguan jiwa lainnya. Dengan menggunakan Northwestern University Schizophrenia Data, penelitian ini bertujuan untuk mengklasifikasikan orang yang menderita Skizofrenia dan orang yang tidak menderita Skizofrenia. Data tersebut terdiri dari 392 observasi dan 65 variabel yang merupakan data demografis dan data kuesioner Scale for the Assessment of Positive Symptoms dan Scale for the Assessment of Negative Symptoms yang diisi oleh klinisi. Metode klasifikasi yang digunakan adalah machine learning dengan metode Support Vector Machines SVM dan Twin Support Vector Machines Twin SVM menggunakan MATLAB R2017a. Simulasi dilakukan dengan data dan persentase data training dan testing yang berbeda-beda. Pada setiap simulai, akurasi serta running time diukur. Validasi dan evaluasi performa dari model yang telah dioptimasi dilakukan dengan mengambil rata-rata dari sepuluh kali Hold-Out Validation yang dilakukan. Pada umumnya, metode Twin SVM berhasil mengklasifikasikan data Skizofrenia dengan lebih akurat dibandingkan dengan metode SVM. Metode Twin SVM dengan kernel Gaussian menghasilkan hasil akhir akurasi klasifikasi data Skizofrenia yang terbaik, yaitu 91,0 . Berdasarkan hasil akhir running time, metode SVM dengan kernel Gaussian untuk klasifikasi data Skizofrenia mempunyai running time yang paling cepat, 0,664 detik. Selain itu, metode SVM dengan kernel linear, metode SVM dengan kernel Gaussian, dan metode Twin SVM untuk klasifikasi data Skizofrenia berhasil mencapai akurasi hingga 95,0 dalam setidaknya satu simulasi.

Schizophrenia is a severe and chronic mental disorder. This disorder is marked with disturbances in thoughts, perceptions, and behaviours. Due to these disturbances that can trigger Schizophrenics to commit suicide or attempt to do so, Schizophrenics have a lower life expectancy than the general population. Schizophrenia is also difficult to diagnose as there is no physical test to diagnose it yet and its symptoms are very similar to several other mental disorders. Using Northwestern University Schizophrenia Data, this research aims to distinguish people who are Schizophrenics and people who are not. The data consists of 392 observations and 65 variables that are demographic data as well as clinician filled Scale for the Assessment of Positive Symptoms and Scale for the Assessment of Negative Symptoms questionnaires. Classification methods that are used are machine learning with Support Vector Machines SVM and Twin Support Vector Machine Twin SVM using MATLAB R2017a. Simulations are done with different data and percentage of training and testing data. In each simulation, accuracy and running time are measured. Performance validation and evaluation of the optimized models are done by taking the average of ten times Hold Out Validations that were done. In general, Twin SVM successfully classified Schizophrenia data more accurately than the SVM method. Twin SVM with Gaussian kernel produced the best final accuracy in classifying Schizophrenia data, 91.0 . Based on the final running time, SVM with Gaussian kernel has the fastest running time in classifying Schizophrenia data, 0.664 seconds. Furthermore, SVM with linear kernel, SVM with Gaussian kernel, and Twin SVM managed to reach an accuracy of 95.0 in at least one simulation in classifying Schizophrenia data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rinawati
"Pesatnya perkembangan jumlah halaman web memotivasi banyak pihak untuk membangun suatu search engine dengan kinerja yang optimal. Proses ranking merupakan bagian penting dalam alur kerja suatu search engine. Salah satu metode alternatif machines learning yang cukup mendapatkan perhatian para peneliti adalah metode ranking SVM. Metode pembelajaran pada ranking SVM berupa model linear yang bertujuan mendapatkan fungsi ranking berdasarkan ide dasar SVM (Support Vector Machines). Studi eksperimental ini bertujuan mengukur kinerja metode ranking SVM pada data LETOR. Data LETOR merupakan data yang diorganisir oleh Microsoft yang ditujukan untuk pembelajaran ranking (leraning to rank). Hasil eksperimen menunjukkan bahwa akurasi MAP (Mean Average Precision) metode ranking SVM pada data LETOR adalah sebesar 47.38%. Hal ini menunjukkan bahwa persoalan ranking merupakan persoalan yang masih bersifat tantangan sehingga diperlukan penelitian lanjutan yang akan memberikan akurasi yang lebih tinggi.

Fast growth of web pages motivates many people to build an optimal search engine. Ranking process is an important part in the workflow of a search engine. One alternative method of machines learning which attracting more researchers? attention is a ranking SVM method. Ranking SVM has a learning system in a linear model form. Its aims to get a ranking function based on the basic idea of SVM (Support Vector Machines). This experimental study aims to measure the performance of SVM ranking methods in LETOR. LETOR benchmark dataset is organized by Microsoft. It have been released to facilitate the research on learning to rank.. The experimental results show that MAP (Mean Average Precision) accuracy of ranking SVM method on LETOR is 47.38%. This shows that the ranking is a challenging issue and required further research to provide higher accuracy."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
T31855
UI - Tesis Open  Universitas Indonesia Library
cover
Rafiqatul Khairi
"Kanker pankreas adalah penyakit di mana sel-sel tumor ganas (kanker) berkembang di jaringan pankreas, yaitu organ di belakang perut bagian bawah dan di depan tulang belakang, yang membantu tubuh menggunakan dan menyimpan energi dari makanan dengan memproduksi hormon untuk mengontrol kadar gula darah dan enzim pencernaan untuk memecah makanan. Biasanya, kanker pankreas jarang terdeteksi pada tahap awal. Salah satu tanda seseorang mengalami kanker pankreas adalah diabetes, terutama jika itu bertepatan dengan penurunan berat badan yang cepat, penyakit kuning, atau rasa sakit di perut bagian atas yang menyebar ke punggung. Di antara berbagai jenis kanker, kanker pankreas memiliki tingkat kelangsungan hidup terendah, yaitu hanya sekitar 3-6% dari mereka yang didiagnosis yang dapat bertahan hidup selama lima tahun. Jika pasien didiagnosis tepat waktu untuk perawatan, peluang mereka untuk bertahan hidup akan meningkat. Terdapat penanda tumor yang biasa digunakan untuk mengikuti perkembangan kanker pankreas, yaitu CA 19-9 yang dapat diukur dalam darah. Orang sehat dapat memiliki sejumlah kecil CA 19-9 dalam darah mereka. Kadar CA 19-9 yang tinggi seringkali merupakan tanda kanker pankreas. Tetapi kadang-kadang, kadar tinggi dapat menunjukkan jenis kanker lain atau gangguan non-kanker tertentu, seperti sirosis dan batu empedu. Karena kadar CA 19-9 yang tinggi tidak spesifik untuk kanker pankreas, CA 19-9 tidak dapat digunakan dengan sendirinya untuk skrining atau diagnosis. Ini dapat membantu memantau perkembangan kanker dan efektivitas pengobatan kanker. Dalam studi ini, metode Kernel-based Support Vector Machine digunakan untuk mengklasifikasikan hasil tes darah CA19-9 menjadi dua bagian; data pasien yang didiagnosis dengan kanker pankreas atau pasien normal (tidak terdiagnosis kanker pankreas). Metode ini memperoleh akurasi sekitar 95%.

Pancreatic cancer is a disease in which malignant (cancerous) tumor cells develop in pancreatic tissue; organ behind the lower abdomen and in front of the spine, which helps the body use and store energy from food by producing hormones to control blood sugar levels and digestive enzymes to break down food. Usually, pancreatic cancer is rarely detected at an early stage. One sign of a person with pancreatic cancer is diabetes, especially if it coincides with rapid weight loss, jaundice, or pain in the upper abdomen that spreads to the back. Among various types of cancer, pancreatic cancer has the lowest survival rate of only about 3-6% of those diagnosed who can survive for five years. If patients are diagnosed on time for treatment, their chances of survival will increase. There is a tumor marker commonly used to follow the course of pancreatic cancer, namely CA 19-9 which can be measured in the blood. Healthy people can have small amounts of CA 19-9 in their blood. High levels of CA 19-9 are often a sign of pancreatic cancer. But sometimes, high levels can indicate other types of cancer or certain noncancerous disorders, including cirrhosis and gallstones. Because a high level of CA 19-9 is not specific for pancreatic cancer, CA 19-9 cannot be used by itself for screening or diagnosis. It can help monitor the progress of your cancer and the effectiveness of cancer treatment. In this study, the Kernel-based Support Vector Machine method is used to classify CA19-9 blood test results into two sections including data on patients diagnosed with pancreatic cancer or normal patients. This method will get an accuracy of around 95%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Soya Febeauty Yama Otantia Pradini
"Metode klasifikasi telah banyak digunakan dalam berbagai aspek, termasuk dalam bidang bioinformatika. Salah satu penggunaan metode klasifikasi ini adalah untuk menentukan tingkatan fase dari sebuah penyakit. Dalam penelitian ini akan dilakukan pengklasifikasian parasit plasmodium falciparum. Parasit tersebut merupakan parasit penyebab penyakit malaria. Penyakit ini dapat ditularkan oleh gigitan nyamuk Anopheles betina yang mengandung plasmodium di dalamnya. Hasil penelitian ini dapat digunakan untuk menentukan fase parasit plasmodium yang berada di sel darah orang yang terjangkit malaria. Tujuan penelitian ini adalah untuk mengetahui persentase keberhasilan dan menganalisis metode Multiclass Support Vector Machines untuk memprediksi tingkatan parasit tersebut. Data yang digunakan adalah data citra sel darah merah yang telah terjangkit tiga jenis tingkatan parasit plasmodium falciparum. Dalam prosesnya, penelitian ini akan menggunakan Canopy sebagai IDE bahasa pemrograman python. Dari 112 percobaan, didapatkan tingkat akurasi tertinggi sebesar 87,5% untuk metode Multclass SVM one vs rest dan one vs one menggunakan 4-fold cross validation dengan parameter linear kernel dan C=1.

Classification methods has been frequently used in various aspects, including bioinformatics. One of its purpose of this classification is to  determine phase level of a disease. This research will classify the phase of plasmodium falciparum parasite which causes malaria.The disease is spread by an infected female Anopheles mosquito which contains Plasmodium. The result of this research could be use to determine Plasmodium parasite phase in infected peoples red blood cells. The purpose of this research is to discover the success rate of Multiclass Support Vector Machines method and analyze it in order to predict the parasite phase levels. The data of this study is image data of red blood cells which was infected by three kinds of Plasmodium falciparum parasite levels. In the process, this study will be using Canopy as Integration Development Environtments of phyton programming language.  From 112 trials, the highest number of accuracy is 87.5% for Multiclass Support Vector Machines one vs rest and one vs all methods which used the 4-fold cross validation with C=1 as parameter for linear kernel."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T52713
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>