Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4895 dokumen yang sesuai dengan query
cover
Donald W. Brown
"This book describes the work carried out by the Los Alamos National Laboratory to turn an idealistic concept, that of drawing useful amounts of energy from the vast underground store of hot rock at reachable depths, into a practical reality. It also discusses the numerous technical, administrative, and financial hurdles that had to be overcome along the way. "
Heidelberg : Springer, 2012
e20405755
eBooks  Universitas Indonesia Library
cover
London: Earthscan, 2003
621.44 GEO
Buku Teks  Universitas Indonesia Library
cover
Armstead, H. Christopher H.
London ; New York: E&FN Spon, 1983
621.44 ARM g
Buku Teks  Universitas Indonesia Library
cover
cover
Noval Suryadi
"

Dalam rangka upaya memenuhi target  bauran energi baru terbarukan terkait kapasitas terpasang Pembangkit Listrik Panas Bumi (PLTP) pada tahun 2025 sebesar 7.200 MW, dengan potensi sumber daya panas bumi sebesar 23.060 MW baru sebesar 2.360 MW yang dimanfaatkan menjadi Pembangkit Listrik Tenaga Panas Bumi (PLTP). Pada Wilayah Kerja Panas Bumi “XYZ” terdapat potensi cadangan panas bumi 464 MW, namun baru dimanfaatkan menjadi Pembangkit Listrik Panas Bumi sebesar 55 MW (12%). Untuk meningkatkan kapasitas pembangkit pada Wilayah Kerja Panas Bumi “XYZ” yang telah beroperasi dapat menurunkan tingkat risiko sumber daya panas bumi, menekan biaya investasi awal dan mengurangi waktu pembangunan pembangkit karena proses pengembangan panas bumi tidak dimulai dari tahap awal. Tujuan penelitian ini adalah untuk mengevaluasi dan menganalisis  dalam investasi pengembangan kapasitas pembangkit listrik panas bumi menggunakan Simulasi Monte Carlo dalam pengambilan keputusan, dengan memperhitungkan variabel-variabel ketidakpastian seperti faktor kapasitas, tingkat suku bunga, inflasi, pajak, proporsi pembiayaan ekuitas, dan jangka waktu pembangunan. Hasil analisis  menunjukkan bahwa skema investasi pengembangan kapasitas pembangkit dengan cara memaksimalkan cadangan panas bumi menghasilkan  peningkatan probabilitas Net Present Value bernilai positive.


In order to meet the renewable energy mix target related to the installed capacity of Geothermal Power Plants (PLTP) in 2025 of 7,200 MW, with the potential of geothermal resources of 23,060 MW, only 2,360 MW has been utilised as a Geothermal Power Plant. In the Geothermal Working Area "XYZ" there are potential geothermal reserves of 464 MW, but only 55 MW (12%) has been utilised as a Geothermal Power Plant. To increase the generating capacity in the "XYZ" Geothermal Working Area that has been operating can reduce the risk level of geothermal resources, reduce initial investment costs and reduce plant construction time because the geothermal development process does not start from the initial stage. The purpose of this study is to evaluate and analyse the investment in geothermal power plant capacity development using Monte Carlo Simulation in decision making, by taking into account uncertain variables such as capacity factor, interest rate, inflation, tax, proportion of equity financing, and construction period. The results of the analysis show that the investment scheme for developing generating capacity by maximising geothermal reserves results in an increase in the probability of a positive Net Present Value.

"
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Chandrasekharam, D.
Boca Raton: CRC Press, Taylor & Francis Group, 2008
621.44 CHA l
Buku Teks  Universitas Indonesia Library
cover
"Penelitian ditujukan untuk mendapatkan model geofisika prospek
geothermal Metta. Pelaksanaan penelitian dimulai pada pertengahan bulan
Januari – April 2007 di kantor Pertamina Geothermal Energy (PGE) dengan
memodelkan penampang inversi dua dimensi magnetotellurik (MT) dan
pengolahan data pendukung. Interpretasi dan penggambaran model geofisika
dilaksanakan di kampus Universitas Indonesia (UI) hingga awal Juni 2007.
Ketiga penampang pemodelan MT menunjukkan keberadaan sistem
geothermal dilihat dari kontras nilai resistivitas batuan. Hasil ketiga model
menunjukkan lokasi up flow, yaitu berada di bawah titik pengukuran MT 15 –
MT 16 pada model satu, MT 21 pada model dua, dan MT 27 pada
penampang tiga. Luas areanya adalah ± 20 km2. Lokasi out flow menuju
sebelah NW dari seluruh titik MT. Prospek Geothermal Metta perlu
pembuktian dengan melakukan pemboran hingga kedalaman 2,5 km tepat
diatas lokasi up flow untuk mendapatkan temperatu reservoir sebesar 350°C."
Universitas Indonesia, 2007
S28891
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dandi Baskoro Soebakir
"Keberadaan struktur geologi merupakan salah satu parameter penting dalam menentukan zona permeabel pada suatu sistem geotermal. Penelitian ini dilakukan di salah satu area prospek geotermal di zona Sistem Sesar Sumatera (GSF) yang termasuk dalam segmen Angkola dan Barumun yang bertujuan untuk mengidentifikasi kemenerusan fitur permukaan hingga bawah permukaan terutama struktur geologi yang berkaitan erat dengan zona permeabel dengan mengintegrasikan data geologi, geokimia, dan geofisika. Teknologi remote sensing digunakan untuk mengidentifikasi struktur geologi yang terobservasi di permukaan yang dikorelasikan dengan persebaran manifestasi permukaan. Namun, tidak semua struktur geologi yang terobservasi di permukaan dapat diamati dan kemenerusannya dari permukaan hingga bawah permukaan dilakukan dengan pendekatan geofisika menggunakan data magnetotelurik (MT) dan gravitasi. Interpretasi struktur geologi permukaan berdasarkan analisis remote sensing dan persebaran manifestasi permukaan memiliki korelasi yang positif dengan hasil gravitasi adanya struktur graben dari zona GSF yang memiliki orientasi baratlaut-tenggara. Kelurusan dan karakteristik (arah dan kemiringan) struktur ditandai dengan adanya kontras nilai gravitasi, nilai Horizontal Gradient Magnitude (HGM) maksimum, dan nilai zero Second Vertical Derivative (SVD) serta analisis Multi Scale-Second Vertical Derivative (MS-SVD). Hasil interpretasi struktur bawah permukaan gravitasi berkorelasi positif dengan analisis parameter MT (splitting curve MT) yang dapat mengindikasi zona struktur bawah permukaan. Gabungan interpretasi struktur permukaan dan bawah permukaan teridentifikasi adanya 5 struktur (F1, F2, F3, F4, dan F5) yang diklasifikasikan sebagai Struktur Pasti (F1, F2, F3, dan F4) dan Struktur Diperkirakan (F5) yang memiliki orientasi baratlaut-tenggara. Struktur F3 yang berorientasi baratlaut-tenggara merupakan struktur utama yang berperan sebagai fluid conduit (zona permeabel) yang dibuktikan dengan adanya manifestasi mata airpanas bertipe klorida. Berdasarkan hasil pemodelan inversi 3-D MT dan pemodelan kedepan 2-D gravitasi dapat mendelineasi zona reservoir pada kedalaman 1500 – 2000-meter yang dikontrol oleh struktur F3 dan zona reservoir berasosiasi dengan batuan metasediment yang nantinya dapat menentukan lokasi sumur pengeboran. Untuk memvisualisasikan sistem geotermal secara komprehensif, maka dikembangkan model konseptual dengan mengintegrasikan model geofisika yang memiliki kualitas data optimum dengan data geologi dan geokimia yang saling berkorelasi, sehingga dapat dijadikan dasar dan acuan dalam menentukan lokasi pengembangan sumur produksi dan reinjeksi dan menurunkan resiko kegagalan dalam well targeting.

The existence of geological structures is one of the important parameters in determining the permeability zone in a geothermal system. This study was conducted in one of the geothermal prospect areas in the Sumatera Fault System (GSF) zone included in the Angkola and Barumun segments which aims to identify the continuity of surface to subsurface features, especially geological structures that are closely related to permeability zones by integrating geological, geochemical, and geophysical data. Remote sensing technology is used to identify geological structures observed at the surface that are correlated with the distribution of surface manifestations. However, not all surface-observed geological structures can be observed and their continuity from the surface to the subsurface is done with a geophysical approach using magnetotelluric (MT) and gravity data. Interpretation of surface geological structures based on remote sensing analysis and the distribution of surface manifestations has a positive correlation with the gravity results of the graben structure of the GSF zone which has a northwest-southeast orientation. The alignment and characteristics (direction and slope) of the structure are characterized by the contrast of gravity values, maximum Horizontal Gradient Magnitude (HGM) values, and zero Second Vertical Derivative (SVD) values as well as Multi Scale-Second Vertical Derivative (MS-SVD) analysis. The results of gravity subsurface structure interpretation are positively correlated with MT parameter analysis (splitting curve) which can indicate subsurface structure zones. The combined interpretation of surface and subsurface structures identified 5 structures (F1, F2, F3, F4, and F5) classified as Certain Structures (F1, F2, F3, and F4) and Estimated Structure (F5) that have a northwest-southeast orientation. The northwest-southeast oriented F3 structure is the main structure that acts as a fluid conduit (permeability zone) as evidenced by the manifestation of chloride-type hot springs. Based on the results of 3-D MT inversion modeling and 2-D gravity forward modeling, it can delineate the reservoir zone at a depth of 1500 - 200 meters controlled by the F3 structure and the reservoir zone is associated with metasedimentary rocks which can later determine the location of drilling wells. To visualize the geothermal system comprehensively, a conceptual model was developed by integrating geophysical models that have optimum data quality with geological and geochemical data that are correlated, so that it can be used as a basis and guide in determining the location of production well development and reinjection and reduce the risk of failure in drilling targets."
Jakarta: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Salusu, Bianca Marella Putri
"Energi panas bumi di Indonesia memegang peranan yang sangat penting dalam energi terbarukan untuk memastikan terdapat sumber energi yang dapat diandalkan dan berkelanjutan. Berdasarkan PP No. 79 Tahun 2014 pada sektor energi, Indonesia menargetkan Energy Mix pada tahun 2025 dimana energi baru dan terbarukan berkontribusi sebesar 23% dari total Energy Mix. Melalui Perpres No. 22 Tahun 2017, Pemerintah Indonesia (RI) telah menetapkan target 7.241,5 MW panas bumi kapasitas terpasang pada tahun 2025. Sedangkan kapasitas terpasang saat ini sekitar 2.133,5 MW. Berdasarkan kesenjangan antara potensi dan kapasitas terpasang PLTP dengan data tersebut dapat disimpulkan bahwa pengembangan panas bumi di Indonesia masih rendah karena banyaknya tantangan yang dihadapi. Salah satu tantangan dalam pengembangan panas bumi adalah isu sosial seperti penolakan dari komunitas cukup banyak mendominasi. Isu sosial dapat mengakibatkan keterlambatan penyelesaian proyek yang akhirnya akan berdampak pada keekonomian proyek. Risiko sosial ini pun dapat diturunkan dengan meningkatkan penerimaan sosial (social acceptance) atas kegiatan panas bumi dengan memahami latar belakang dan faktor yang mempengaruhi rendahnya penerimaan sosial. Social acceptance dapat dibagi menjadi 3 dimensi yaitu: socio- political acceptance, community acceptance, dan market acceptance. Penelitian ini akan berfokus pada socio-political acceptance sebagai dimensi yang paling luas dari social acceptance yang menjelaskan bagaimana manusia dan organisasi membuat keputusan, menyelesaikan konflik, menjalin kemitraan, merespon kebijakan pemerintah serta masalah sosial dan sebagai pondasi dari social acceptance. Strategi yang dihasilkan dari analisis terhadap socio-political acceptance ini diharapkan dapat membantu perusahaan penghasil listrik dari panas bumi (IPP) untuk meningkatkan socio-political acceptance terhadap proyek panas bumi untuk meningkatkan kinerja waktu.

Geothermal energy in Indonesia plays a very important role in renewable energy to ensure that there is a reliable and sustainable energy source. Based on PP No. 79 In 2014 in the energy sector, Indonesia targets the Energy Mix in 2025 where new and renewable energy contributes 23% of the total Energy Mix. Through Presidential Decree No. 22 of 2017, the Government of Indonesia (RI) has set a target of 7,241.5 MW of geothermal installed capacity by 2025. While the current installed capacity is around 2,133.5 MW. Based on the gap between the potential and installed capacity of geothermal power plants with these data, it can be concluded that geothermal development in Indonesia is still low due to the many challenges faced. One of the challenges in geothermal development is that social issues such as refusal from the community dominate quite a lot. Social issues can result in delays in project completion which will ultimately have an impact on the project's economy. This social risk can also be reduced by increasing social acceptance of geothermal activities by understanding the background and factors that influence the low social acceptance. Social acceptance can be divided into 3 dimensions, namely: socio-political acceptance, community acceptance, and market acceptance. This study will focus on socio-political acceptance as the broadest dimension of social acceptance which explains how humans and organizations make decisions, resolve conflicts, establish partnerships, respond to government policies and social problems and as the foundation of social acceptance. The strategy resulting from the analysis of socio-political acceptance is expected to help companies producing electricity from geothermal (IPP) to increase socio-political acceptance of geothermal projects to improve time performance."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dimas Ahmad Syafii
"Keberadaan sistem panas bumi dapat diperkirakan dengan melihat manifestasi yang muncul di permukaan tanah akibat adanya struktur geologi, seperti sesar/patahan pada daerah potensi panas bumi. Untuk mengetahui keberadaan struktur patahan di lapangan ?DAS? digunakan metode gravitasi. Dalam metode gravitasi terdapat metode lanjutan untuk mengidentifikasi patahan, yaitu FHD (First Horizontal Derivative) dan SVD (Second Vertical Derivative). Metode tersebut memanfaatkan turunan dari nilai anomali gravitasi. Output dari metode tersebut adalah peta kontur yang menunjukkan keberadaan suatu patahan.
Terdapat delapan patahan yang teridentifikasi oleh metode FHD dan SVD, tujuh patahan merupakan patahan normal dan satu patahan merupakan petahan naik. Hasil tersebut diintegrasikan dengan data pendukung, seperti data MT, geologi, geokimia, data sumur dan model sintetik. Dari data-data tersebut dapat dibuat model densitas dan model konseptual sistem panas bumi daerah ?DAS?. Model densitas menunjukkan densitas clay cap sebesar 2,25 gr/cm3, densitas reservoir sebesar 2,41 gr/cm3, dan densitas heat source sebesar 2,81 gr/cm3. Berdasarkan model konseptual, fumarol dan mata air panas SPG merupakan zona upflow, sedangkan mata air panas BB 1 dan BB 2 merupakan zona outflow.

The existence of geothermal system can be assessed by identifying distribution of manifestations that appears on the surface. The manifestations appear because of geology structure, like fault structure on geothermal potention area. Gravity method is used to knowing the exsistence of fault structure on ?DAS field. In gravity method, there are the advanced methods to identify fault. They are FHD (First Horizontal Derivative) and SVD (Second Vertical Derivative). Those methods use derivative of gravity anomaly value. The output of FHD and SVD is contour map that indicates the exsistence of fault.
There are eight faults identified by FHD and SVD, they are seven normal faults and a reverse fault. The FHD and SVD contour map will be integrated with other support data, such as resistivity section of MT, geology data, geochemistry data, thermal gradient data, and sintetic model. Those data result density model and conseptual model of ?DAS? field geothermal system. Density model show the density of clay cap is 2,25 gr/cm3, reservoir is 2,41 gr/cm3, and heat source is 2,81 gr/cm3. Base on conseptual model, fumarole and hot spring SPG are upflow zone, while hot springs BB 1 and BB 2 are outflow zone.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S63686
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>