Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 13072 dokumen yang sesuai dengan query
cover
Marino, Armando
"This thesis presents a groundbraking methodology for the radar international community. The detection approach introduced, namely perturbation analysis, is completey novel showing a remarkable capability of thinking outside the box. Perturbation analysis is able to push forward the performance limits of current algorithms, allowing the detection of targets smaller than the resolution cell and highly embedded in clutter. The methodology itself is extraordinary flexibe and has already been used in two other large projects, funded by the ESA (European Space Agency): M-POL for maritime surveillance, and DRAGON-2 for land classification with particular attention to forests. "
Heidelberg : Springer, 2012
e20401908
eBooks  Universitas Indonesia Library
cover
"Flood that occurred in Jakarta is not only influenced by rainfall, urban planning system and drainage alone, but also may be involved land subsidence (LS). LS is possible in because Jakarta stands
on top of layers of sediments and the presence of ground water consumption in very large quantities.In this research, the Adva
nced Land Observing Satellite (ALOS)/Phased Array type L-band Synthetic Aperture Radar (PALSAR) data was processed to determine the level of LS in Jakarta area and its relation to flood potential area.
Differential interferometry method (DInSAR) was performed on two PALSAR data with different acquisition years, i.e. 2007 and 2008, respectively. DInSAR processing generated images containing information that can be converted into LS. To find the elevation changing area, log ratio algorithm was applied to those images as the additional analysis. The log ratio image is superimposed on the DInSAR result and Jakarta inundation map of 2009, to acquire the relationship between LS and the flood and flood vulnerability map of Jakarta based on LS. It is found that lands on the flooded area of 10.57 cm on the average, with a minimum and maximum of 5.25 cm and 22.5 cm, respec
tively. The greater the value of LS, inundation area also tend to widen, except in a few areas that have special conditions, such as reservoirs, river flow solution, water pump system and sluices.
Accuracy of DInSAR result image is quite high, with the difference of 0.03 cm (0.18%) to 0.55 cm (3.37%) as compared to those from GPS measurements. These results can be recommended to the local government of Jakarta to minimize the potential risk of flood, as well as the subject of city planning for the future."
[Direktorat Riset dan Pengabdian Masyarakat Universitas Indonesia, Fakultas Teknik Universitas Indonesia], 2011
pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Yani Rahmanida
"Padi merupakan komoditas tanaman pangan penghasil beras dan berperan penting dalam kehidupan ekonomi Indonesia. Sebanyak 90% penduduk Indonesia mengonsumsi beras sebagai makanan pokok sehari-hari, sehingga dibutuhkan antisipasi jika kebutuhan pangan meningkat. Estimasi produktivitas padi menggunakan penginderaan jauh dinilai efektif dan relatif murah. Tujuan dari penelitian ini adalah untuk menganalisis karakteristik tanaman padi dan mengestimasi produktivitas padi serta sebarannya dengan menggunakan model estimasi produktivitas padi di Kecamatan Nagrak, Sukabumi. Metode yang digunakan yaitu metode NDVI (Normalized Difference Vegetation Index) dan memanfaatkan citra sentinel-2A untuk menentukan umur tanaman padi dan kemudian digunakan untuk membuat model estimasi produktivitas padi. Hasil penelitian menunjukkan bahwa tingkat akurasi indeks vegetasi NDVI sebesar 90%. Nilai indeks vegetasi meningkat seiring dengan bertambahnya umur tanaman padi. Tanaman padi mempunyai masa tanam 2-3 kali dalam setahun. Sementara itu, model estimasi produktivitas padi di Kecamatan Nagrak yaitu y = 3,7636 x + 3,0602 dengan nilai korelasi nilai NDVI dan produktivitas padi sebesar 91,64%. Nilai Indeks vegetasi NDVI dan produktivitas padi berhubungan positif pada tiap kondisi fisik. Indeks vegetasi tinggi mencerminkan produktivitas tinggi dan sebaliknya. Produktivitas padi didominasi oleh produktivitas tinggi (>6,0 ton/ha) yang banyak tersebar pada wilayah dengan ketinggian 500-1000 m dpl, lereng 8-15% dan pada jarak 0-150 m dari sungai.

Rice plant is a food-producing crop that supplies rice and plays an important role in the economic life of Indonesia. Rice is eaten by as much as 90% of Indonesia's population as their everyday staple food, so anticipation is needed if food needs increase. The calculation of rice productivity using remote sensing is considered efficient and relatively inexpensive. The aim of this analysis was to evaluate the characteristics of rice plants and estimate the productivity and distribution of rice in Nagrak District, Sukabumi, using the rice productivity estimation model. The methodology used is the NDVI (Normalized Difference Vegetation Index) approach which uses sentinel-2A imagery to assess the age of rice plants and then to produce rice productivity estimation model. The results showed that the accuracy rate of the NDVI is 90 percent. The value of the vegetation index increases with increasing age of the rice plants. Rice plants have a planting period of 2-3 times a year. Meanwhile, the rice productivity estimation model in Nagrak District is y = 3.7636 x + 3.0602 with a correlation value of the NDVI value and rice productivity of 91.64 percent. The NDVI vegetation index value and rice productivity were positively related to each physical condition. High vegetation index reflects high productivity and vice versa. Rice productivity is dominated by high productivity levels (> 6.0 tons/ha) which are widely spread over areas with an altitude of 500-1000 m above sea level, slopes of 8-15% and at a distance of 0-150 m from the river."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Enrico Gracia
"Padi merupakan komoditas tanaman pangan yang menghasilkan beras. Pemanfaatan teknologi penginderaan jauh dalam estimasi produksi padi dapat memberikan informasi yang cepat dan hemat biaya. Penelitian ini menggunakan citra Planet Fusion dengan resolusi spasial 3 meter dan bebas awan untuk menganalisis fenologi dan produktivitas padi berbasis indeks vegetasi. Tiga indeks vegetasi, yaitu NDVI, GNDVI, dan EVI, dievaluasi dengan mengambil nilai indeks dari citra Planet Fusion. Estimasi produktivitas padi akan ditentukan menggunakan indeks-indeks tersebut, yang kemudian akan dianalisis hubungan spasial kondisi fisik di Desa Wargasetra. Hasil menunjukkan bahwa ketiga indeks vegetasi memiliki nilai RMSE yang kecil (berkisar antara 0,21–0,25), menunjukkan tingginya akurasi data citra multispektral Planet Fusion. Secara spasial, pola tanam padi berubah dinamis berdasarkan ketinggian, di mana padi di lahan sawah yang lebih tinggi ditanam atau dipanen lebih awal mengikuti arah aliran air. Indeks vegetasi GNDVI sesuai untuk pemetaan distribusi umur tanaman padi dengan rerata r2 = 0,892. Produktivitas padi di Desa Wargasetra dapat diestimasi dengan indeks vegetasi NDVI, yang dimana sesuai untuk digunakan estimasi produktivitas panen padi, dengan nilai r2 = 0,678 dan RMSE = 0,057. Analisis regresi berganda menunjukkan korelasi produktivitas padi sebesar 0,776 dengan jenis tanah dan jarak dari sungai. Jenis tanah Aluvial Eutrik dan Kambisol Eutrik memiliki produktivitas padi tertinggi. Lahan sawah di ketinggian 50–100 mdpl memiliki rata-rata produktivitas padi yang lebih tinggi, sementara produktivitas cenderung menurun saat menjauh dari aliran sungai.

Rice crop is a significant food-crop commodity worldwide. Remote sensing technology is applied to obtain rapid and cost-effective information on rice crop production. This study analyzed the phenology and productivity of rice crop in Desa Wargasetra using Planet Fusion imagery, with a spatial resolution of 3-meter and cloud-free. The analysis was based on three vegetation indices, such as NDVI, GNDVI, and EVI, obtained from Planet Fusion imagery. The evaluation of these indices allowed for estimating rice productivity and its spatial relationship with physical conditions in Desa Wargasetra. The results demonstrated that Planet Fusion's multispectral imagery data is accurate, with a small RMSE value (ranging from 0.21 to 0.25) for the three vegetation indices. The rice crops phenology pattern changed dynamically based on altitude, with rice in higher area planted or harvested earlier following the direction of water flow. The GNDVI vegetation index is suitable for mapping the age distribution of rice plants, with an average r2 of 0.892. The NDVI vegetation index is suitable for estimating rice harvest productivity in Desa Wargasetra, with an r2 of 0.678 and an RMSE of 0.057. Multiple regression dummy variable analysis revealed a correlation between rice productivity, soil type, and distance from the river. Eutric Alluvial and Eutric Cambisol soil types had the highest rice productivity. Paddy fields at 50–100 meters above sea level had higher average rice productivity, while productivity will be decreased if they are far from the river."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anugrah Indah Lestari
"Kebakaran hutan dan lahan merupakan bencana yang memiliki dampak negatif dalam berbagai sektor. Identifikasi area bekas terbakar diperlukan dengan cepat untuk mengendalikan kebakaran hutan dan lahan. Penginderaan jauh merupakan teknologi yang umum digunakan untuk identifikasi area bekas terbakar, namun tidak banyak penelitian terkait kombinasi data penginderaan jauh optis dan SAR untuk identifikasi area bekas terbakar. Di samping itu, data penginderaan jauh SAR memiliki keunggulan sebagai teknologi yang dapat digunakan dalam berbagai kondisi cuaca. Penelitian ini bertujuan untuk mengevaluasi model area bekas terbakar menggunakan integrasi convolutional neural network (CNN) sebagai feature extractor dan random forest (RF) sebagai pengklasifikasi dengan pendekatan feature learning pada data Sentinel-1 dan Sentinel-2. Penelitian ini menguji lima skema yaitu: (1) hanya menggunakan data penginderaan jauh optis; (2) hanya menggunakan data penginderaan jauh SAR; (3) kombinasi data penginderaan jauh optis dan SAR hanya pada polarisasi VH; (4) kombinasi data penginderaan jauh optis dan SAR hanya pada polarisasi VV; serta (5) kombinasi data penginderaan jauh optis dan SAR dual polarisasi VH dan VV. Pengujian juga dilakukan terhadap pengklasifikasi CNN, pengklasifikasi RF, dan pengklasifikasi neural network (NN). Berdasarkan hasil overall accuracy pada lokasi penelitian, metode integrasi CNN dan RF memberikan hasil terbaik pada lima skema yang diujikan dengan overall accuracy tertinggi mencapai 92%. Hal ini menunjukan potensi metode integrasi CNN dan RF untuk digunakan dalam mengidentifikasi area bekas terbakar. Hasil estimasi luas area bekas terbakar pada lokasi penelitian dengan metode integrasi CNN dan RF pada model terbaik diperoleh seluas 57.899,91 hektar

Forest and land fires are disasters that have large impacts in various sectors. Burned area identification is needed to control forest and land fires. Remote sensing is used as common technology for rapid burned area identification. However, there are not many studies related to the combination of optical and SAR remote sensing data for burned area. In addition, SAR remote sensing data has the advantage of being a technology that can be used in various weather conditions. This study aims to evaluate burned area model using the integration of Convolutional Neural Network (CNN) as a feature extractor and Random Forest (RF) as classifiers on Sentinel-1 and Sentinel-2 data. This study tests five schemes: (1) using optical remote sensing data; (2) using SAR remote sensing data; (3) combination of optical and SAR data with VH polarization only; (4) combination of optical and SAR data with VV polarization only; and (5) combination of optical and SAR data with dual VH + VV polarization. The studies were also carried out on CNN classifier, RF classifier, and neural network (NN) classifier. Based on the results of the overall accuracy at the research site, the integration of CNN and RF method gave the best results in the five schemes tested with the highest overall accuracy reaching 92%. This shows the potential of the CNN and RF integration method to be used in identifying burned areas. The estimation result of the burned area at the research site using the best model of CNN and RF integration method is ​​57,899.91 hectares"
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
"The book focuses on new challenging prospects for the use of EO in archaeology not only for probing the subsurface to unveil sites and artifacts, but also for the management and valorization as well as for the monitoring and preservation of cultural resources. The book provides a first-class understanding of this revolutionary scenario which was unthinkable several years ago.
The book offers : (i) an excellent collection of outstanding articles focusing on satellite data processing, analysis and interpretation for archaeological applications, (ii) impressive case studies, (iii) striking examples of the high potential of the integration of multi-temporal, multi-scale, multi-sensors techniques.
"
Dordrecht, Netherlands: Springer, 2012
e20405583
eBooks  Universitas Indonesia Library
cover
Annisa Dwi Hafidah
"Pulau Sumatera memiliki potensi panas bumi terbesar di Indonesia yang tersebar di sepanjang zona subduksi antara lempeng Hindia-Australia dan lempeng Eurasia, salah satunya adalah lapangan geothermal ldquo;A rdquo;. Secara umum, litologi di wilayah penelitian didominasi oleh batuan vulkanik yang berumur kuarter dengan manifestasi berupa fumarol dan mata air panas. Struktur geologi berupa patahan dan pendugaan intrusi batuan yang diidentifikasi sebagai heat source menjadi target dalam penelitian ini.
Metode penginderaan jauh dengan analisis Fault Fracture Density FFD dilakukan untuk mengidentifikasi gejala struktur patahan di permukaan yang berasosiasi dengan manifestasi dan metode gravitasi dengan analisis First Horizontal Derivative FHD dan Second Vertical Derrivative SVD dilakukan untuk mengidentifikasi patahan di bawah permukaan.
Hasil dari penelitian ini menunjukkan bahwa kemunculan manifestasi berada pada zona FFD tinggi dengan kerapatan sebesar 4 km/km2. Analisis data FHD dan SVD dapat mengkonfirmasi patahan berarah Barat Daya-Timur Laut, Barat Laut-Tenggara, dan struktur kaldera dengan jenis patahan keseluruhan berupa patahan normal.
Hasil inversi 3D gravitasi mengidentifikasi batuan clay cap memiliki densitas 2.015 gr/cc sampai 2.24 gr/cc, batuan reservoir memiliki densitas 2.3 gr/cc sampai 2.4 gr/cc dan batuan heat source memiliki densitas 2.5 gr/cc sampai 2/8 gr/cc. Zona upflow terletak di bagian Barat wilayah penelitian dengan suhu reservoir berkisar antara 200°C-220°C.

Sumatra Island has the largest geothermal potential in Indonesia spread along the subduction zone between the Indies Australian plate and the Eurasian plate. ldquo A rdquo geothermal field is one of them. In general, lithology in the study area is dominated by quaternary volcanic rocks and it has some manifestations such as fumaroles and hot springs. This study is focus on identify the structure and intrusion that identified as a heat source.
Remote sensing methods with Fault Fracture Density FFD analysis were performed to identify symptoms of surface fractures associated with manifestations and gravity methods with First Horizontal Derivative FHD and Second Vertical Derivative SVD analyzes performed to identify subsurface fractures.
The results of this study indicate that the appearance of manifestation is in the high FFD zone with a density of 4 km km2. Analysis of FHD and SVD data can confirm the Southwest Northeast, Northwest Southeast fault, and caldera structure with the overall fracture type are normal fault.
The result of gravity 3D inversion identifies clay cap rock has density 2,015 gr cc to 2,24 gr cc, reservoir rock has density 2,3 gr cc to 2,4 gr cc and heat source rock has density 2.5 gr cc to 2 8 gr cc . The upflow zone is located in the west of the research area with reservoir temperatures ranging from 200°C 220°C.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49621
UI - Tesis Membership  Universitas Indonesia Library
cover
Aditya Kusuma Al Arif
"Kebutuhan masyarakat terhadap pemahaman intensitas curah hujan serta distribusi secara spasial dan temporal penting terhadap kewaspadaan kebencanaan. Pengamatan curah hujan yang real-time yang disertai prakiraan dapat menjadi dasar yang kuat untuk membangun sistem peringatan dini, khususnya banjir bandang, di mana dapat diamati dari curah hujan yang sangat tinggi dengan rentang waktu pendek. Sistem pengamatan permukaan untuk unsur curah hujan secara otomatis sudah diterapkan di Indonesia menggunakan tipping bucket. Citra satelit Himawari 9 dapat memberikan gambaran curah hujan secara spasial. Informasi peringatan dini potensi membutuhkan sistem pengiriman dan penerimaan data yang andal menggunakan basis pengiriman data melalui internet dengan berbagai protokol MQTT. Tujuan penelitian ini adalah untuk merancang sistem akuisisi data monitoring curah hujan realtime dari penakar hujan otomatis serta merancang sisem peringatan dini cuaca dengan penimbang citra satelit dalam bentuk website. Penelitian ini mampu memonitor curah hujan secara realtime per sepuluh menit dengan ketersediaan data 94,45% dan dapat meningkat hingga 99,0% dan dapat memberikan peringatan dini dengan tingkat kepercayaan sangat tinggi sebesar 73,59% dan tingkat kepercayaan tinggi sebesar 20,77%. Terdapat peringatan dini dengan tingkat kepercayaan rendah sebesar 4,45% yang diakibatkan oleh hujan lokal dengan skala spasial kurang dari 5x5 km2. Peringatan dini yang dihasilkan ditampilkan dalam antarmuka website.

The community's need to understand rainfall intensity and its spatial and temporal distribution is important for disaster awareness. Real-time rainfall observations accompanied by forecasts can be a strong basis for building an early warning system, especially for flash floods, where very high rainfall can be observed over a short time span. An automatic surface observation system for rainfall elements has been implemented in Indonesia using a tipping bucket. Himawari 9 satellite imagery can provide a spatial overview of rainfall. Potential early warning information requires a reliable data sending and receiving system using a data transmission base via the internet with various MQTT protocols. The aim of this research is to design a real-time rainfall monitoring data acquisition system from an automatic rain gauge and design a weather early warning system by weighing satellite images in the form of a website. This research is able to monitor rainfall in real time every ten minutes with data availability of 94.45% and can increase to 99.0% and can provide early warning with a very high level of confidence of 73.59% and a high level of confidence of 20.77% . There is an early warning with a low confidence level of 4.45% which is caused by local rain with a spatial scale of less than 5x5 km2. The resulting early warning is displayed in the website interface."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dinda Jaelani Hidayat
"Pertambahan penduduk di daerah perkotaan merupakan salah satu alasan utama
terjadinya perubahan iklim lokal, dan berdampak besar pada daerah sekitarnya.
Urbanisasi yang cepat dan daerah lahan terbuka yang digantikan oleh tutupan lahan
buatan yang berdampak negatif pada ekosistem yang mengakibatkan efek Urban Heat
Island (UHI). Hal tersebut berdampak merugikan pada lingkungan pemukiman dan
berimplikasi pada kesehatan manusia.
Informasi indeks UHI yang akurat dapat sangat
membantu untuk mengambil strategi perencanaan kota yang efektif. Penelitian ini
berkontribusi pada pengembangan sistem pemantauan suhu berbasis Internet of Things
untuk mendukung informasi indeks UHI. Sistem dirancang dengan menggunakan sensor
suhu DS18b20. Data dari sensor diolah oleh data logger dan dikirim ke server
menggunakan ESP8266. Sistem perancangan akan mengolah data dari sensor menjadi
informasi suhu perkotaan dan pedesaan serta indeks UHI.
Selain itu, pendekatan Long
Short Term Memory yang dihadirkan dalam penelitian ini diharapkan dapat berguna
untuk memprediksi indeks UHI dengan lebih akurat untuk mengantisipasi dampak
peningkatan indeks UHI. Hasil kalibrasi sensor suhu menunjukkan nilai koreksi pada set
point 0 °C ,10 °C, 20 °C , 30 °C dan 40 °C sebesar 0,216 °C, 0,201 °C, -0,295 °C, -0,188
°C dan -0,167 °C untuk sensor di daerah urban dan sensor yang dipasang di daerah rural
memiliki nilai koreksi pada set point tersebut sebesar 0,116 °C, 0,267 °C, 0,165 °C, 0,294
°C dan 0,211 °C . Hasil prediksi menunjukkan nilai MAE sebesar 0,55, RMSE sebesar
0,78 dan akurasi sebesar 68,33%. Hasil penelitian ini menunjukkan sistem dapat
diimplementasikan sebagai alternatif untuk membantu dalam analisis UHI yang berbasis
Internet of Things.
Population growth in urban areas is one of the main reasons for local climate change, and
has a major impact on the surrounding area. Rapid urbanization and areas of open land
replaced by artificial land cover have a negative impact on the ecosystem resulting in the
Urban Heat Island (UHI) effect. This has a detrimental impact on the residential
environment and has implications for human health.
Accurate UHI index information can
be very helpful for adopting an effective urban planning strategy. This research
contributes to the development of a temperature monitoring system based on the Internet
of Things to support the UHI index information. The system is designed using the
DS18b20 temperature sensor.
The data from the sensor is processed by the data logger
and sent to the server using the ESP8266. The design system will process data from
sensors into urban and rural temperature information as well as the UHI index. In
addition, the Long Short Term Memory approach presented in this study is expected to
be useful in predicting the UHI index more accurately to anticipate the impact of
increasing the UHI index. The results of the temperature sensor calibration show a
correction value at set point 0 °C, 10 °C, 20 °C, 30 °C and 40 °C of 0.216 °C, 0.201 °C,
-0.295 °C, -0.188 °C and -0.167 °C for sensors in urban areas and sensors installed in
rural areas have correction values at the set point of 0.116 °C, 0.267 °C, 0.165 °C, 0.294
°C and 0.211 °C . The prediction results show that the MAE value is 0.55, the RMSE
value is 0.78 and the accuration is 68,33%. The results of this study indicate that the
system can be implemented as an alternative to assist in the analysis of UHI based on the
Internet of Things."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rui Giusti
"Kabupaten Cianjur, Provinsi Jawa Barat, merupakan kabupaten yang rawan terhadap bencana alam, terutama bencana hidrometeorologi. Faktor curah hujan seperti kejadian hujan ekstrem menjadi pemicu utama banyaknya kejadian bencana seperti longsor dan banjir. Namun, keterbatasan data curah hujan menyebabkan kesulitan dalam memprediksikan pola hujan Dibutuhkan sumber data curah hujan lain yang dapat digunakan untuk menganalisis pola hujan. Penelitian ini bertujuan menganalisis pola spasio-temporal hujan ekstrem berbasis data stasiun observasi curah hujan dan data satelit NOAA-AVHRR dan mencari korelasi antara kedua sumber data tersebut. Data curah hujan harian periode tahun 2004-2017 dihitung menggunakan metode fix threshold R50. Hasil analisis memperlihatkan bahwa terdapat nilai korelasi kuat positif antara data curah hujan berbasis data stasiun observasi dengan data curah hujan satelit NOAA-AVHRR dengan nilai korelasi yaitu 0,9 pada bulan Maret 2015 dan 0,8 pada bulan Agustus 2016. Dapat dikatakan bahwa data satelit NOAA-AVHRR dapat dijadikan acuan untuk memprediksikan curah hujan. Hasil analisis juga memperlihatkan faktor ketinggian mempengaruhi pola spasial hujan ekstrem di Kabupaten Cianjur.

Cianjur Regency, in West Java Province, is a regency which is prone to natural disasters, particularly hydro meteorological disasters. Rainfall related factors such as events of extreme rainfall became a primary cause for the relatively high frequency of occurrences of natural disasters such as landslides and flooding incidents. However, the limited rainfall data available caused difficulties in predicting the rainfall patterns. An alternative source of rainfall data is needed for analysing the spatial temporal pattern of extreme rainfall, based on data acquired from weather and rainfall observation stations as well as data acquired from NOAA AVHRR satellites, and also by finding correlations between the two data sources mentioned. Daily rainfall data between 2004 2017 would be counted by using the fix threshold R50 method. The results show that there are a strongly positive correlation r between the rainfall observation station data and the rainfall data from NOAA AVHRR with value 0.9 on March 2015 and 0,8 on August 2016. Because of that NOAA AVHRR satellite data can be relied upon for predicting rainfall. The results also show that elevation affects the spatial pattern of extreme rainfall in Cianjur Regency. Where, mountainous areas tend to have a higher frequency of extreme rainfall.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>