Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 84593 dokumen yang sesuai dengan query
cover
"Penjadwalan ujian merupakan tantangan yang dihadapi oleh universitas tiap
semester atau tiap tahun. Tantangannya adalah untuk menjadwalkan ujian dari
sekian banyak mata kuliah, yang diikuti oleh sejumlah mahasiswa (satu
mahasiswa mungkin mengikuti lebih dari satu mata kuliah), ke dalam waktu yang
terbatas dan jumlah ruangan yang terbatas. Dalam persoalan perwanaan graf,
terdapat sifat yang dapat digunakan untuk merepresentasikan persoalan
penjadwalan ujian, dimana tidak ada dua atau lebih simpul yang bertetangga
mempunyai warna yang sama. Dalam persoalan penjadwalan ujian, tidak boleh
terdapat dua ujian yang diikuti oleh minimal satu mahasiswa yang sama
dilaksanakan pada waktu yang sama. Dalam persoalan pewarnaan graf, kondisi
tersebut dipenuhi ketika dua simpul yang bertetangga yang merepresentasikan dua
ujian tersebut mempunyai warna yang berbeda. Jumlah minimal warna yang
diberikan pada suatu graf dapat merepresentasikan jumlah minimal hari yang
digunakan dalam pelaksanaan ujian. Di dalam skripsi ini akan ditampilkan
algoritma berbasis pewarnaan graf untuk mendapatkan jadwal ujian yang
memenuhi aspek keadilan bagi mahasiswa, akurat, dan mempunyai periode waktu
yang optimal. Kompleksitas dan efisiensi dari algoritma ini juga merupakan hal
yang diperhatikan dalam skripsi ini."
Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Laninca Swarintha Christine
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27856
UI - Skripsi Open  Universitas Indonesia Library
cover
Rahima Fitriani
"Misalkan G= V,E adalah suatu graf dengan V adalah himpunan simpul dan E adalah himpunan busur. Pewarnaan busur sejati dari sebuah graf G merupakan pemberian warna pada busur-busur di G, satu warna untuk masing-masing busur, dan untuk setiap dua busur bertetangga diberikan warna yang berbeda. Pewarnaan busur optimal merupakan pewarnaan busur sejati dengan menggunakan warna sebanyak bilangan kromatik busur graf. Pada graf yang diwarnai busurnya dapat diperoleh lintasan pelangi atau lingkaran pelangi, yaitu lintasan atau lingkaran dengan seluruh busurnya memiliki warna yang berbeda. Skripsi ini meneliti bagaimana aturan pewarnaan busur optimal diberikan pada graf kipas dan graf roda sehingga diperoleh lingkaran pelangi dengan panjang 3 sampai dengan n.

Let G V,E be a graph with V is a set of vertices and E is a set of edges. A proper edge coloring of graph is assignment of colors to the edges of G, one color to each edge, and for two adjacent edges given different colors. An optimal edge coloring is proper edge coloring that use number of color as many as graph s edge chromatic number. On edge colored graph can be obtained rainbow path or rainbow cycle, that is path or cycle whose all edges have different colors. This undergraduate thesis provide optimal edge coloring rules that can be given to fan graph and wheel graph such that there will be rainbow cycles with length 3 up to n."
Depok: Universitas Indonesia, 2017
S68236
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kevin Kamal
"Pengklasteran clustering yang dilakukan dengan menggunakan metode graf disebut dengan pengklasteran graf graph clustering . Pengklasteran graf dengan memperhatikan bobot dapat diselesaikan dengan menggunakan pohon rentangan minimum. Salah satu algoritma yang dapat digunakan untuk menyelesaikan pengklasteran graf berbobot berdasarkan pohon rentangan minimum adalah algoritma maximum standard deviation reduction MSDR . Pada algoritma MSDR tidak perlu ditentukan banyaknya klaster yang terbentuk, karena terdapat perhitungan untuk menentukan banyak klaster secara otomatis. Namun dalam penelitian lanjutan algoritma MSDR cukup sulit dikerjakan karena sulitnya dalam menentukan nilai kandidat klaster terbaik, sehingga dilakukan modifikasi untuk menentukan nilai -nya. Modifikasi ini disebut dengan modifikasi MSDR MMSDR. Penelitian ini merupakan implementasi dari algoritma MMSDR pada masalah rute penerbangan di Indonesia yang disebut maskapai X, dengan menggunakan input matriks komplemen. Dengan menggunakan input matriks dari komplemen graf didapatkan pengklasteran berdasarkan jarak antar bandara. Penelitian ini juga menganalisis perubahan nilai epsilon dan perubahan matriks input. Hasil analisis menunjukkan bahwa perubahan nilai epsilon tidak mempengaruhi banyaknya klaster dan anggota klaster, sedangkan perubahan matriks input dapat mempengaruhi perbedaan anggota klaster.

Clustering is done by using graph method called graph clustering. Graph clustering with weights can be solved by using a minimum spanning tree. One of the algorithms that can be used to complete a weighted graph clustering based on a minimum spanning tree is the maximum standard deviation reduction MSDR algorithm. In the MSDR algorithm there is no need to determine the number of clusters that are formed, because there are calculaions to determine many clusters automically. However, in advanced research MSDR algorithm is quite difficult to do because of the difficulty in determining the value of best cluster candidates, so modifications are made to determine the value of. This modification is called the modification MSDR MMSDR. This research is an implementation of MMSDR algorithm on flight route problem in Indonesia called airline X, by using input complement matrix. Using the matrix input from the complement graph obtained clustering based on the distance between airports. This research also analyzed changes in epsilon value and changes in input matrix. The results of the analysis show that the change in epsilon value does not affect the number of clusters and clusters members, whereas the change in input matrix may affect the cluster members.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S69594
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alfi Maulani
"Bilangan keterhubungan pelangi dari suatu graf G, disimbolkan rc G , adalah banyaknya warna minimal yang diperlukan untuk mewarnai busur-busur di G sedemikian rupa sehingga setiap pasang simpul dapat dihubungkan oleh suatu lintasan yang warnanya berbeda semua. Bilangan keterhubungan pelangi kuat dari suatu graf G, disimbolkan src G , adalah banyaknya warna minimal yang diperlukan untuk mewarnai busur-busur di G sedemikian rupa sehingga setiap pasang simpul dapat dihubungkan oleh suatu lintasan geodesik lintasan terpendek yang warnanya berbeda semua. Operasi korona graf G terhadap H, dinotasikan G - H menghasilkan graf baru dengan konstruksi mengambil 1 salinan graf G dengan n simpul dan n salinan H1, H2, . . . , Hn dari H, lalu menghubungkan simpul dari G ke setiap simpul di Hi. Tesis ini meliputi hasil kajian tentang rc dan src pada beberapa kelas graf korona yang terkait dengan Pm, Fm dan Wm.

The rainbow connection number of a graph G, denoted by rc G , is the smallest number of colors needed to color the edges of G such that every pair of vertices is connected by a path consisting of different colors. The strong rainbow connection number of a graph G, denoted by src G , is the smallest number of colors needed to color the edges of G such that every pair of vertices is connected by a geodesic path shortest path consisting of different colors. Operation corona graph G to H, denoted by G H is obtained from new graph with construction by taking one copy of G with n vertices and n copies of H1, H2, . . . , Hn from H and then joining the ith vertex of G to every vertex of Hi. This thesis contains some results regarding the rc and src for some corona graphs which has relation with Pm, Fm and Wm.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49557
UI - Tesis Membership  Universitas Indonesia Library
cover
Dhita Puspitasari
"Misalkan G adalah graf dengan himpunan simpul V dan himpunan busur E, dimana |V(G)| dan |E(G)| menyatakan banyaknya simpul dan busur pada G. Suatu pemetaan f : V  {0, 1 , …, |E|} disebut pelabelan graceful jika f merupakan fungsi injektif yang menginduksi fungsi bijektif g, g(uv) = |f(u) – f(v)|, dimana uv merupakan sebuah busur yang mempunyai titik ujung simpul u dan v, g : E  {1, 2 , …, |E|}. Dalam skripsi ini diberikan algoritma untuk menghasilkan semua pelabelan graceful yang tidak isomorfik pada graf lintasan Pn, graf matahari 𝐶𝑛⊙ 𝐾 1 dan graf ular k-C4 yang mungkin. Algoritma-algoritma ini kemudian diimplementasikan dalam program. Diberikan juga simulasi banyak pelabelan graceful mungkin sampai nilai n atau k tertentu."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27876
UI - Skripsi Open  Universitas Indonesia Library
cover
"University Course Timetabling Problem merupakan proses penjadwalan mata kuliah di sebuah universitas yang hasilnya diusahakan seoptimal mungkin untuk tidak saling berbenturan dengan batasan-batasan dan syarat-syarat (constraints) tertentu. Dalam menentukan penjadwalan berbasis perhitungan, salah satu metode yang dapat digunakan adalah Graph Coloring. Graph Coloring merupakan merupakan metode yang paling sederhana dan dapat digunakan untuk menentukan penjadwalan yang memiliki berbagai macam constraints. Pada penelitian ini, peneliti mengusulkan pengembangan dari metode Graph Coloring yang ada untuk membuat penjadwalan mata kuliah yang optimal dengan memertimbangkan berbagai macam constraints. Pengembangan ini diujicobakan ke penjadwalan mata kuliah di Fakultas Teknologi Informasi Universitas Tarumanagara (FTI Untar). Hasil percobaan menunjukkan bahwa pengembangan metode Graph Coloring memberikan hasil penjadwalan yang memenuhi rata-rata 93% seluruh constraints yang ditentukan. Rata-rata 7% pelanggaran constraints dikarenakan keterbatasan jumlah ruang dan total slot waktu kuliah, serta permintaan jadwal tertentu oleh dosen.

Abstract
University Course timetabling problem is the process of scheduling courses at a university whose results are optimally arranged to not collide with the limits and conditions (constraints) specified. In determining the scheduling komputatif, one method that can be used is the Graph Coloring. Graph Coloring is the simplest method and can be used to determine which have a variety of scheduling constraints. In the present study, the researcher proposes the development of the existing methods of Graph Coloring to make optimal scheduling of courses taking into account various constraints. This development was tested to the scheduling of courses in the Faculty of Information Technology University Tarumanagara (FTI Untar). The experimental results show that the development of methods of Graph Coloring deliver results that meet the scheduling of an average 93% of all the specified constraints. Average of 7% violation constraints due to limitations of space and the total number of time slots in college, and request a specific schedule by the lecturer."
[Fakultas Ilmu Komputer Universitas Indonesia, Universitas Tarumanagara. Fakultas Teknologi In formasi], 2011
pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Milla Rachmawati
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27839
UI - Skripsi Open  Universitas Indonesia Library
cover
Elvi Khairunnisa
"Sebuah graf adalah pasangan himpunan dengan adalah himpunan tidak kosong dan adalah himpunan mungkin kosong pasangan tidak berurutan dari elemen-elemen . disebut dengan simpul dan disebut dengan busur. Pelabelan graceful didefinisikan sebagai pemberian label pada simpul suatu graf G yang memenuhi fungsi injektif dari himpunan simpul ke himpunan bilangan bulat tak negatif sedemikian sehingga setiap busur xy di G mendapat label , maka label setiap busur akan berbeda. Graf bunga aster merupakan graf yang dibentuk dari graf lingkaran dengan menghubungkan graf lintasan pada dua simpul yang bertetangga. Graf korona bunga aster merupakan graf yang dibentuk dari graf bunga aster dengan menambahkan r simpul daun pada setiap simpulnya. Pada tesis ini dibahas graf yang mempunyai pelabelan graceful atau tidak mempunyai pelabelan graceful pada graf bunga aster untuk dan graf korona bunga aster untuk dan.

A graph is a sets where is the non empty set and is the set of possibly empty of non sequential elements . is called as vertices and is called as edges. Graceful labeling is defined as labeling the vertices of graph that satisfies the injective function from the set of vertices to the set of non negative integers such that each of the xy edges in G gets label , then the label of each vertices will be distinct. An aster flower graph is a graph which generated from the cycle graph by connecting the path graph to the two adjacent vertices. A corona product of aster flower graph is a graph which generated from an aster flower graph by adding r leaf vertices on each vertex. This thesis discusses graphs that have graceful labeling or doesn rsquo t have graceful labeling on aster flower graph for and corona product of aster flower graph for and.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T50683
UI - Tesis Membership  Universitas Indonesia Library
cover
Syafira Maharaniputri Vyandra
"

Graf 𝐺 terdiri dari sepasang himpunan simpul dan himpunan busur. Graf yang tersusun dari sebanyak 𝑛 graf bintang yang terhubung oleh satu simpul tambahan disebut sebagai graf pohon pisang. Orde ganjil pada graf pohon pisang dapat dicapai dengan ukuran dan banyaknya graf bintang yang membentuk dirinya. Pelabelan super busur graceful merupakan pemetaan bijektif himpunan busur ke himpunan {0, ±1, ±2, … , ± |𝐸(𝐺)|−1 2 } apabila jumlah busur ganjil dan ke himpunan { ±1, ±2, … , ± |𝐸(𝐺)|−1 2 } apabila jumlah busur genap, sedemikian sehingga tidak terdapat label busur yang sama dan tiap simpul 𝑥 dari busur 𝑥𝑦 memiliki bobot ∑𝑥∈𝑉(𝐺) 𝑓(𝑥𝑦), tidak memiliki bobot simpul yang sama. Lee membuat sebuah konjektur bahwa semua graf pohon berorde ganjil berlabel super busur graceful. Sesuai dengan konjektur tersebut, penelitian ini akan membahas pelabelan super busur graceful untuk graf pohon pisang dengan orde ganjil.


Graph 𝐺 consisted of a pair of a set of vertices and a set of edges. A graph made out of as many as 𝑛 star graph, connected by an additional vertex, is called a banana tree graph. A banana tree graph with an odd order can be achieved by a certain size of star graph it is made of. Super edge graceful labeling is a bijective mapping of a set of edges a set of {0, ±1, ±2, … , ± |𝐸(𝐺)|−1 2 } if there are odd amount of edges and to a set of { ±1, ±2, … , ± |𝐸(𝐺)|−1 2 } if there are even amount of edges thus that there are no edges sharing the same label and for each 𝑥 vertex from an 𝑥𝑦 edge labeled ∑𝑥∈𝑉(𝐺) 𝑓(𝑥𝑦), there is no vertex sharing the same label. Lee created a conjecture stating that all odd ordered tree graphs are super edge graceful. Based on that conjecture, this research will discuss super edge graceful labeling on odd ordered banana tree graph.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>