ABSTRAKBilangan keterhubungan pelangi dari suatu graf G, disimbolkan rc G , adalah banyaknya warna minimal yang diperlukan untuk mewarnai busur-busur di G sedemikian rupa sehingga setiap pasang simpul dapat dihubungkan oleh suatu lintasan yang warnanya berbeda semua. Bilangan keterhubungan pelangi kuat dari suatu graf G, disimbolkan src G , adalah banyaknya warna minimal yang diperlukan untuk mewarnai busur-busur di G sedemikian rupa sehingga setiap pasang simpul dapat dihubungkan oleh suatu lintasan geodesik lintasan terpendek yang warnanya berbeda semua. Operasi korona graf G terhadap H, dinotasikan G ? H menghasilkan graf baru dengan konstruksi mengambil 1 salinan graf G dengan n simpul dan n salinan H1, H2, . . . , Hn dari H, lalu menghubungkan simpul dari G ke setiap simpul di Hi. Tesis ini meliputi hasil kajian tentang rc dan src pada beberapa kelas graf korona yang terkait dengan Pm, Fm dan Wm.
ABSTRACTThe rainbow connection number of a graph G, denoted by rc G , is the smallest number of colors needed to color the edges of G such that every pair of vertices is connected by a path consisting of different colors. The strong rainbow connection number of a graph G, denoted by src G , is the smallest number of colors needed to color the edges of G such that every pair of vertices is connected by a geodesic path shortest path consisting of different colors. Operation corona graph G to H, denoted by G H is obtained from new graph with construction by taking one copy of G with n vertices and n copies of H1, H2, . . . , Hn from H and then joining the ith vertex of G to every vertex of Hi. This thesis contains some results regarding the rc and src for some corona graphs which has relation with Pm, Fm and Wm.