Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 135487 dokumen yang sesuai dengan query
cover
Rendra Satya Wirawan
"Dengan terus bertambahnya industri pada berbagai bidang, membuat konsumen memiliki banyak pilihan ketika memilih barang atau jasa. Oleh karena itu dibutuhkan suatu cara agar dapat menghasilkan barang dengan tepat. Hal inilah yang menjadi peranan dari sebuah metode peramalan permintaan. Terdapat banyak cara dalam melakukan peramalan, namun cara manakah yang dapat memberikan hasil yang terbaik. ANN dan SVR merupakan salah satu cara yang memberikan hasil peramalan terbaik. Dalam penelitian ini, dibandingkan antara metode ANN dan SVR dengan metode tradisional. Dari enam jenis data yang digunakan empat menunjukan ANN memberikan peramalan terbaik, dan satu menunjukan SVR memberikan peramalan terbaik.

With the continuous increase of industry in many fields, making consumers to have many choices when choosing goods or services. Because of that, we need some way to produce good with the correct amount. This is the role of a demand forecast method. There are many methods in demand forecast, but which method that give the best result. ANN and SVR are one of many methods that will give the best forecast result. In this research, ANN and SVR method will be compared to the traditional methods. From six kinds of data that is used, four show that ANN give the best forecast result, and one shows SVR give the best forecast result."
Depok: Fakultas Teknik Universitas Indonesia, 2011
S775
UI - Skripsi Open  Universitas Indonesia Library
cover
Rochmatullah
"Tesis ini meneliti metode pengklasifikasian menggunakan metode jaringan syaraf tiruan untuk mengklasifikasikan data aroma. Data aroma adalah data keluaran dari sistem penciuman elektronik. Penelitian ini merupakan lanjutan penelitian sebelumnya yaitu metode pengklasifikasian fuzzy-neuro learning vector quantization (fnlvq). Sebelumnya telah dikembangkan pula metode matrix similarity analysis (msa) guna menentukan kriteria pemberhentian algoritma fnlvq.
Dalam penelitian ini akan dikembangkan dua metode fnlvq yang akan dioptimasikan dengan metode swarm intelligence yaitu fnlvq-particle swarm optimization (pso) dan metode swarm-fnlvq. Dengan menggunakan validasi silang, hasil dari penelitian ini menunjukkan bahwa rata-rata tingkat pengklasifikasian untuk aroma tiga campuran menggunakan fnlvq-pso sebesar 91% dan swarm-fnlvq sebesar 90% dimana kedua metode ini lebih baik daripada fnlvq yang sebesar 79% dan fnlvq-msa sebesar 77%.

This thesis examines a classification method based on artificial neural networks to classifying various mixture of fragrance which is the output of the electronic nose system. This research is a continuation research of earlier fuzzy-neuro learning vector quantization (fnlvq) classification method. Previously a matrix similarity analysis method is developed to determine a stopping criterion of fnlvq algorithms.
This research objective is to develops two modification fnlvq method based on swarm intelligence method namely fnlvq-particle swarm optimization (pso) and swarm-fnlvq methods. By using cross validation, this research showed that the average classification rate of fnlvq-pso is 91% whether swarm-fnlvq is 90%, this two methods is better than conventional fnlvq with 79% and fnlvq-msa at 77%.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
T-Pdf
UI - Tesis Open  Universitas Indonesia Library
cover
Danu Widatama
"Biometrik adalah proses identifikasi dan autentikasi berdasarkan atribut unik yang dimiliki oleh manusia. Salah satu atribut manusia yang dapat digunakan untuk biometrik adalah iris. Iris adalah bagian dari mata yang mengatur banyaknya cahaya yang masuk mengenai retina. Iris berbentuk lingkaran dan memiliki karakteristik yang unik pada setiap orang. Penelitian ini adalah tentang pengenalan iris untuk biometrik.
Dalam penelitian ini pembuatan vektor masukan untuk pengenalan dilakukan dengan cara yang berbeda dari biasanya yaitu dengan melingkar, sesuai bentuk iris. Untuk pengenalannya digunakan metode pattern matching dan jaringan syaraf tiruan. Dengan pembuatan vektor masukan secara melingkar, tingkat pengenalan yang dihasilkan cukup tinggi terutama jika metode pengenalan yang digunakan adalah dengan pattern matching.

Biometric is the process of identification and authentication based on many unique attributes of human. One of the usable human attributes for biometric is iris. Iris is a part of the human eye which controls the amount of light going to the retina. Iris is circular and each person has a different iris characteristics. This research is about iris recognition for biometrics.
In this research, the input vector for recognition is created with a different way from the usual. The input vector is created by following iris shape which is circular. The recognition process is done by using pattern matching and artificial neural network. The creation of input vector by circling yields a high recognition rate, especially when pattern matching is used for the recognition process.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Arief Purnama L.K.
"Tujuan dari tesis ini adalah untuk berkontribusi dalam pengembangan sistem kecerdasan buatan (artificial intelligence) untuk memodelkan pergerakan saham yang bersifat tidak liner dan penuh ketidakpastian. Pendekatan yang digunakan adalah model Artificial Neural Network (ANN) metode Backpropagation. Sebagai pembanding, digunakan model multivariate ARIMA. Penelitian akan membuktikan bahwa model ANN dapat lebih tepat memprediksi pergerakan harga saham di Indonesia, khususnya saham-saham anggota indeks LQ45, dibandingkakan model multivariate ARIMA. Penelitian ini adalah penelitian observasi model. Penelitian menghasilkan kesimpulan bahwa model ANN signifikan secara statistik lebih akurat daripada model multivariate ARIMA.

The objective of this thesis is to contribute the development of artificial intelligence system in modeling stock price movement which highly non-linier and uncertain in nature. Our approach is using Artificial Neural Network (ANN) with Backpropagation method. In comparing the accuracy of the model, we use multivariate ARIMA method. This research intend to show that ANN model is more accurate in predicting Indonesian stock price movement, especially LQ45 index, compared to multivariate ARIMA model. This research is using observational method in selecting the best model. The result of the research is that ANN is statistically significant and more accurate compared to multivariate ARIMA model."
Depok: Fakultas Eknonomi dan Bisnis Universitas Indonesia, 2010
T28101
UI - Tesis Open  Universitas Indonesia Library
cover
Hadi Al Rasyid
"Semakin meningkatnya kebutuhan masyarakat pada energi semakin mendorong berkembangnya teori manajemen permintaan energi. Indonesia sebagai negarayang mengalami peningkatan kebutuhan konsumsi premium masih membutuhkan perbaikan dalam tata kelolakebijakan energinya. Salahsatunya dalam melakukan peramalan. Oleh karena itu,Dibutuhkan suatu cara agar dapat melakukan peramalan konsumsi BBM premium di Indonesia.Dalam penelitian ini, peramalan dilakukandengan dua cara. Yaitu dengan menggunakan Multi Linear Regrresi dan Neural network. Hasil yang didapat menunjukkan bahwa metode Multi linear regresi memperoleh keakuratan yang lebih baik dibanding Neural network.

The increasing of energy consumption encouraging the development of energy demand management theory. Indonesia as a country which have increasing consumption premium fuel in few years is need to improve their energy policy, especially in forecasting. Therefore, there are need a methode to forecast premium demand in Indonesia. In this research, forecasting is done with using Multi Linear Regression and Neural Network. The result is the accuration of Multi Linear Regression methode better than the accuration of Neural network methode.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45434
UI - Tesis Membership  Universitas Indonesia Library
cover
Silitonga, Permatasari
"Di Indonesia, dengue telah menjadi salah satu penyakit yang bersifat hiperendemis. Dengue diderita oleh masyarakat dari berbagai kalangan usia, baik pria maupun wanita. Dengue memiliki manifestasi klinis yang terdiri dari tiga fase: fase demam, fase kritis, dan fase penyembuhan. Banyak pasien dengue meninggal pada fase kritis karena pengobatan yang tidak dilaksanakan tepat waktu. Oleh karena itu, dibangunlah model-model yang dapat memprediksi tingkat keparahan dengue berdasarkan hasil uji laboratorium dari pasien yang bersangkutan menggunakan Artificial Neural Network (ANN) dan Analisis Diskriminan (AD). Dalam pembangunan model-model tersebut, digunakan data dengan jumlah yang sangat kecil, yakni sebesar 77 data. Dalam data tersebut, terdapat informasi mengenai hasil uji laboratorium dan diagnosis dari pasien yang bersangkutan. Diagnosis tersebut dikelompokkan ke dalam tiga kategori keparahan dengue, yakni DF sebagai tingkat ringan, DHF grade 1 sebagai tingkat sedang, dan DHF grade 2 sebagai tingkat parah. Dalam penelitian ini, dilakukan tiga pemisahan data, yakni dengan rasio data training : data testing sebesar 70% : 30%, 80% : 20%, and 90% : 10%. Berdasarkan hasil yang diperoleh, model-model prediksi ANN yang dibangun menggunakan fungsi aktivasi logistik dan tangen hiperbolik dengan persentase data training sebesar 70% menghasilkan akurasi (90.91%), sensitivitas (91.11%), dan spesifisitas (95.51%) tertinggi. Model-model tersebutlah yang diajukan dalam penelitian ini. Model-model tersebut akan mampu membantu para dokter dalam memprediksi tingkat keparahan dengue dari pasien yang bersangkutan sebelum memasuki fase kritis. Lebih jauh, model-model tersebut dapat memudahkan para dokter dalam mengobati pasien dengue secara dini, sehingga kasus-kasus fatal atau kematian dapat dihindari.

In Indonesia, dengue has become one of the hyperendemic diseases. Dengue is being suffered by many people of all ages, both men and women. Dengue has clinical manifestations that are divided into three phases: febrile phase, critical phase, and convalescence phase. Many patients have died in the critical phase due to the lack of timely treatment. Therefore, I developed models that can predict the severity of dengue based on the corresponding patients’ laboratory test results using Artificial Neural Network (ANN) and Discriminant Analysis (DA). In developing the models, I used a very small dataset, which only consisted of 77 data. The data contains information regarding the laboratory test results and the diagnosis of each of the corresponding patients. The diagnoses were classified into three categories of dengue severity, which are DF as the mild level, DHF grade 1 as the intermediate level, and DHF grade 2 as the severe level. I conducted three different data split, that is, with the ratio of training : testing = 70% : 30%, 80% : 20%, and 90% : 10%. It is shown that ANN models developed using logistic and hyperbolic tangent activation function with 70% training data yielded the highest accuracy (90.91%), sensitivity (91.11%), and specificity (95.51%). These ANN models are the proposed models in this research. The proposed models will be able to help physicians predict the dengue severity of a corresponding patient before entering the critical phase. Furthermore, it will ease physicians in treating dengue patients early, so deaths or fatal cases can be avoided."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
Hutapea, Martin Breshney
"Pada Skripsi ini direkayasa sistem identifikasi tanda tangan menggunakan jaringan syaraf tiruan dengan berbasis perangkat pemrograman MATLAB. Sistem ini mengenali citra tanda tangan seperti atau bahkan lebih baik dari daya persepsi manusia dibutuhkan perangkat pemrograman dengan kemampuan manipulasi numerik yang cepat dan akurat karena citra dalam format dijital direpresentasi dalam bentuk matriks angka. Belakangan ini tersedia perangkat pemrograman yang mampu memenuhi persaratan tersebut yaitu MATLAB (Mathematic Laboratory). Perangkat pemrograman ini sangat luas penggunaannya karena kemampuan manipulasi numeriknya yang baik dan kesederhanaan sistemnya. Pengambilan citra, pengolahan citra, pembentukan jaringan dan pelatihan jaringan dilakukan berbasis perangkat pemrograman MATLAB. Diharapkan sistem ini dapat bekerja dengan baik mengenali citra tanda tangan asli dan palsu yang dimasukan sebagai citra pelatih dan penguji jaringan sayaraf tiruan.

This Thesis create a signature recognition system using artificial neural network based MATLAB programming platform. Image aquisition, image extraction, image processing, network implementation and network training conducted based on MATLAB programming platform. The signature recognition system that could recognize the signature image as good as or better that human description ability required a programming platform with fast and acurate numerical manipulation process because of an image in digital form was represented by a matrix of number. Lately, a programming platform that fit the requirement is availabe which is MATLAB (Mathematic Laboratory). This programming platform has a extensive utilization because of its fine numerical manipulation ability and its system modesty. The system is expected to be able to perform well on identifying and distinguish original signature iamge and its forgery that feed to the artificial neural network as image trainer and image tester."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S40393
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mendrofa, Gabriella Aileen
"Pilar adalah unit struktural penting yang digunakan untuk memastikan keselamatan penambangan di tambang batuan keras bawah tanah. Oleh karena itu, prediksi yang tepat mengenai stabilitas pilar bawah tanah sangat diperlukan. Salah satu indeks umum yang sering digunakan untuk menilai stabilitas pilar adalah Safety Factor (SF). Sayangnya, batasan penilaian stabilitas pilar menggunakan SF masih sangat kaku dan kurang dapat diandalkan. Penelitian ini menyajikan aplikasi baru dari Artificial Neural Network-Backpropagation (ANN-BP) dan Deep Ensemble Learning untuk klasifikasi stabilitas pilar. Terdapat tiga jenis ANN-BP yang digunakan untuk klasifikasi stabilitas pilar dibedakan berdasarkan activation function-nya, yaitu ANN-BP ReLU, ANN-BP ELU, dan ANN-BP GELU. Dalam penelitian ini juga disajikan alternatif pelabelan baru stabilitas pilar dengan mempertimbangkan kesesuaiannya dengan SF. Stabilitas pilar diperluas menjadi empat kategori, yaitu failed dengan safety factor yang sesuai, intact dengan safety factor yang sesuai, failed dengan safety factor yang tidak sesuai, dan intact dengan safety factor yang tidak sesuai. Terdapat lima input yang digunakan untuk setiap model, yaitu pillar width, mining height, bord width, depth to floor, dan ratio. Hasil penelitian menunjukkan bahwa model ANN-BP dengan Ensemble Learning dapat meningkatkan performa ANN-BP dengan average accuracy menjadi 86,48% dan nilai F2 menjadi 96,35% untuk kategori failed dengan safety factor yang tidak sesuai.

Pillars are important structural units used to ensure mining safety in underground hard rock mines. Therefore, precise predictions regarding the stability of underground pillars are required. One common index that is often used to assess pillar stability is the Safety Factor (SF). Unfortunately, such crisp boundaries in pillar stability assessment using SF are unreliable. This paper presents a novel application of Artificial Neural Network-Backpropagation (ANN-BP) and Deep Ensemble Learning for pillar stability classification. There are three types of ANN-BP used for the classification of pillar stability distinguished by their activation functions: ANN-BP ReLU, ANN-BP ELU, and ANN-BP GELU. This research also presents a new labeling alternative for pillar stability by considering its suitability with the SF. Thus, pillar stability is expanded into four categories: failed with a suitable safety factor, intact with a suitable safety factor, failed without a suitable safety factor, and intact without a suitable safety factor. There are five inputs used for each model: pillar width, mining height, bord width, depth to floor, and ratio. The results showed that the ANN-BP model with Ensemble Learning could improve ANN-BP performance with an average accuracy of 86.48% and an F2-score of 96.35% for the category of failed with a suitable safety factor.
"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Maulana Bisyir Azhari
"Identifikasi sistem dinamik merupakan tahapan awal dalam melakukan perancangan algoritma kendali pada suatu sistem dinamik. Namun, pada sistem dinamik yang multivariabel, tidak linier dan kopling tinggi-seperti pada misil AIM-9L Sidewinder-identifikasi sistem dinamik umumnya akan gagal dan sering terjadi simplifikasi pada sistem yang diidentifikasi, seperti dekopling dan linearisasi sistem. Pada penelitian ini, identifikasi sistem dinamik misil dilakukan dengan menggunakan algoritma artificial neural network dengan harapan karakteristik sistem dinamik tetap terjaga dengan baik. Penerbangan misil dilakukan dengan menggunakan simulator X-Plane dan akuisisi data penerbangannya dilakukan menggunakan bahasa pemrogramman python. Penerbangan dilakukan dengan sinyal referensi swept-sine dan zig-zag untuk mancakup banyak kemungkinan penerbangan misil. Hasilnya, artificial neural networks dapat melakukan pemetaan pola sistem dinamik misil dengan standardized MSE 7.155x10^(-2).

Dynamical system identification is the very first step in designing a control algorithm on a dynamic system. However, in the multivariate, nonlinear and coupled dynamical system-like the AIM-9L Sidewinder missile-dynamical system identifications are often failed and oversimplified the dynamical system, such as decoupling and linearization. In this research, system identification is done by using artificial neural networks algorithm with expectations that its characteristics will be maintained well. The missile flights are done by using the X-Plane flight simulator and the acquisition process is done by using python language. The flights use swept sine and zig-zag references to cover lots of missile flight conditions possibility. As a result, artificial neural networks can do missile dynamical pattern mapping with 7.155x10^(-2) standardized mean squared errors."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>