Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 19878 dokumen yang sesuai dengan query
cover
"This paper discuss regarding the study usage of acoustic emission technology in determining the damage at motorbike engine. Study conducted to perceive trouble at motor engine one cylinder due to imperfect condition of opening combustion valve. deeply investigation is conducted to perceive the damage that happened at rocker arm shaft..."
Artikel Jurnal  Universitas Indonesia Library
cover
Bhirawa Bagus Pratama Putra
"Dengan bertambahnya populasi di Bumi ini, meningkat juga kebutuhan pangan dalam kehidupan. Karena itu, dunia agrikultur diharuskan dapat berjalan dengan efektif dan aman dari ancaman. Meski begitu, pengawasan perkebunan tidak dapat dilakukan oleh manusia terus-menerus, sehingga lahan tersebut dapat diserang oleh gulma, yaitu hama tanaman yang tumbuh dan mengambil nutrisi tanah yang membantu pertumbuhan tanaman agrikultur. Dengan adanya pertimbangan ini, dirancang sistem deteksi objek yang menggunakan ekstraksi objek yang dapat mengambil fitur dari dedaunan tanaman dan membandingkannya dengan fitur dedaunan gulma. Fitur yang diambil berupa bentuk dari daun, dilihat melalui ekstraksi fitur titik ujung suatu objek melalui Oriented FAST and Rotated BRIEF (ORB), dan ekstraksi fitur tekstur objek melalui Local Binary Pattern (LBP). Kedua ekstraksi fitur ini digabungkan melalui metode normalisasi dan z-score, dan akan dijalankan dalam bahasa Python. Evaluasi dilakukan dengan membandingkannya dengan bila sistem dijalankan dengan ORB sendiri dan LBP sendiri, melalui akurasinya. Selain itu, dilakukan evaluasi terhadap SVM untuk klasifikasi citra, dengan menentukan akurasi mana yang lebih tinggi di antara SVC dengan tiga kernel linear, RBF, dan polynomial, atau LinearSVC. Hasil penelitian menunjukan bahwa model deteksi objek menggunakan ORB saja memiliki akurasi lebih tinggi dengan nilai akurasi 0.912 dibanding dengan model deteksi objek dengan LBP yang memiliki akurasi 0.808. Untuk evaluasi model klasifikasi SVM yang sudah menggunakan ekstraksi fitur LBP, SVC dengan kernel linear dan RBF memiliki akurasi yang tinggi, di mana SVC dengan kernel linear memiliki nilai 0.77, dan dengan RBF 0.79. Namun, peningkatan dari akurasi SVC dengan RBF tidak dapat menandingi waktu eksekusi SVC dengan kernel linear yang memiliki nilai 2.62 ms, bila dibanding dengan kernel RBF yang mencapai 3.76 ms.

, With the increase in Earth’s population, the daily need for food also rises. Due to this, the world of agriculture must run effectively and safe from any threats. However, constant observations of plantations by humans are not possible, leading to the fields to be overgrown by weeds, a pest in the form of plants that grow and take the nutrients of planted crops. With this in consideration, a detection system utilizing feature extraction algorithms designed that is capable of extracting the features, which are shapes and textures, of leaves and weeds. Shapes are taken into account by edge-based feature extraction model, Oriented FAST and Rotated BRIEF(ORB), while textures are analyzed by binary-based Locab Binary Pattern (LBP). These two features are joined using normalization and z-score method, and is run using Python. Evaluation is done by comparing the system with two others using only ORB and LBP, through its accuracy in the system. Other than that, Evaluation will be done on SVM-based image classification, by deciding which of the SVM with three different kernels, linear, RBF and polynomial, and LinearSVC, has the highest accuracy. After evaluation, it is found that ORB is a better feature extraction algorithm within the system, with an accuracy of 0.912, followed by LBP with accuracy of 0.808. For evaluation on SVM with LBP as feature extraction algorithm, SVC with linear and RBF kernels are two of the highest classification models in term of accuracy, with SVC with linear kernel having 0.77 in value, while SVC with RBF kernel having 0.79. However, the 0.02 increase in SVC with RBF kernel’s accuracy is negligible, due to having a longer execution time of 3.76 ms, while SVC with linear kernel has 2.62 ms, making SVC with linear kernel a better choise due to efficiency."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dharmawan Harsokoesoemo
Bandung: ITB Press, 1979
621.803 DAR d
Buku Teks  Universitas Indonesia Library
cover
Andi Adriansyah
"Paper ini memaparkan perancangan pengendali robot berbasis perilaku menggunakan Fuzzy, di mana parameter Fuzzy ditala secara otomatis menggunakan Particle Swarm Optimization (PSO) yang diistilahkan dengan Particle Swarm Fuzzy Controller (PSFC). Suatu fungsi tertentu dirancang untuk meningkatkan performa proses pencarian PSO. Fungsi tersebut mengubah harga bobot inersia menjadi berkurang secara sigmoid (Sigmoid Decreasing Inertia Weight). Empat buah perilaku robot dirancang menggunakan PSFC. Kemudian seluruh perilaku tersebut juga dikoordinasikan menggunakan PSFC. Beberapa simulasi pengendalian pergerakan robot dan percobaan dengan robot MagellanPro telah dilakukan untuk menguji performa algoritma yang dirancang. Algoritma lain, Genetic Fuzzy Controller (GFC) digunakan sebagai pembanding. Dari hasil pengujian dapat dikatakan bahwa pengendali yang dirancang memiliki kemampuan yang baik untuk menyelesaikan tugasnya pada suatu lingkungan nyata.
This paper describes the design of robots controllers based on behaviour using Fuzzy, in which the Fuzzy parameters are automatically tuned using the Particle Swarm Optimization (PSO) which is termed the Particle Swarm Fuzzy Controller (PSFC). A particular function is designed to improve the performance of PSO search process. That particular function changes the value of the inertia weight, so it‟s decreased in sigmoid (Sigmoid Decreasing Inertia Weight). Four types of robots behaviour are designed and coordinated using the PSFC. Some simulation of the robot movement control and experiments with the robot MagellanPro have been conducted to test the performance of the algorithm that have been designed. Another algorithm, Genetic Fuzzy Controller (GFC) is used as a comparison. From the test results, it can be said that the controllers that have been designed have a good ability to accomplish its task in a real environment.
"
Universitas Mercu Buana, Fakultas Teknologi Industri, Program Studi Teknik Elektro, 2010
PDF
Artikel Jurnal  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1996
S36271
UI - Skripsi Membership  Universitas Indonesia Library
cover
Depok: Departemen Teknik Mesin FT-UI, 2004
621.4 SEM p
Buku Teks  Universitas Indonesia Library
cover
"Gaji merupakan sesuatu yang penting bagi pegawai. Keputusan yang tepat dalam menentukan gaji adalah hal yang harus dilakukan oleh pimpinan. Baru pada langkah selanjutnya kita lakukan pengolahan data yang diawali dengan penentuan variable. Kemudian dilanjutkan dengan pembentukan himpunan fuzzy, dan dilakukan penegasan (defuzzy) sebagai langkah terakhir. Penugasan dilakukan dengan bantuan software matlab toolbox fuzzy. Logika fuzzy merupakan suatu metode untuk melakukan analisis system yang mengandung ketidakpastian. Pada metode ini dilakukan metode mamdani."
000 JEI 3:2 (2014)
Artikel Jurnal  Universitas Indonesia Library
cover
Gultom, Aswin Lorenso
"Alat pemecah kulit kerang yang ada di Departemen Teknik Mesin Fakultas Teknik Universias Indonesia kurang efisien. Salah satu penyebab tidak efisiennya alat tersebut adalah getaran yang terjadi pada poros sangat besar. Getaran ini disebabkan oleh gaya ketidakseimbangan (unbalanced forced) pada poros. Gaya ketidakseimbangan yang terjadi pada poros adalah dynamic unbalanced force, dan untuk mengatasinya dapat menggunakan counter weight. Gaya unbalanced merupakan gaya sentrifugal dan untuk mengatasinya dibutuhkan counter weight yang berputar, sehingga menimbulkan gaya sentrifugal untuk melawan gaya unbalanced tersebut. Gaya unbalanced yang terjadi pada poros dapat diketahui besar dan arahnya dengan mengukur tegangan dan reganan yang terjadi pada poros tersebut. Salah satu alat untuk mengukur regangan pada poros adalah strain gage.
Hasil pengukuran gaya unbalanced yang terjadi pada poros tersebut akan menjadi input desain counter weight. Dengan penggunaan counter weight maka gaya-gaya unbalanced yang terjadi pada poros dapat dikurangi, sehingga getaran pada poros akan semakin berkurang dan menambah efisiensi alat.

Oyster shell crusher that was built in Mechanical Engineering Departmen University of Indonesia is lack of efficiency. The lack of efficiency is caused by many things, such as vibration, fiction, the slope of the cone, etc. The vibration can occur when two thinks collide each other or when ihe shaft is unbalanced are unbalanced force happened in the shaft is dynamic unbalanced like unbalanced force is a centrifugal force. In order to solve the problems, it has ro be added by counter weigh that act as a spinning mass and caused a centrifugal force either.
The unbalanced force can be found by measuring stress and strain of the shaft Sensor to measure the stress and strain of the shaft is strain gage. Output of the measurement can be used as input to design counier weight. By using counter weight the unbalanced force can be reduced this the vibration will decrease and tne efficiency will increase.
"
Depok: Fakultas Teknik Universitas Indonesia, 2005
S37756
UI - Skripsi Membership  Universitas Indonesia Library
cover
Doni Pradana
"Customer churn merupakan masalah serius di banyak sektor, termasuk sektor telekomunikasi. Pengertian costumer churn adalah berhentinya penggunaan suatu layanan dan beralih ke penyedia lain atau tidak memperbarui kontrak. Untuk mengatasi risiko churn, perusahaan telekomunikasi perlu menggunakan model prediksi dengan bantuan metode machine learning. Terdapat beberapa model prediksi churn yang telah diajukan oleh para peneliti, termasuk pemilihan algoritma yang sesuai dan dataset untuk studi kasus. Pada tesis ini menggunakan dataset IBM Telco Customer Churn sebagai data pelatihan dan pengujian. Tantangan umum dalam klasifikasi adalah ketidakseimbangan data, yang dapat menyebabkan kegagalan dalam memprediksi kelas minoritas. Oleh karena itu, tesis ini menggunakan beberapa teknik augmentasi data seperti SMOTE, HAT, dan CVAE, sebagai teknik dalam menyeimbangkan data. Pembelajaran ensembel khususnya metode CART (Classification and Regression Tree) sering digunakan untuk menyelesaikan permasalahan klasifikasi dan regresi. Model Adaboost adalah algoritma pembelajaran ensemble yang menggunakan pohon keputusan sebagai dasar pembelajaran. Dalam pelatihan model Adaboost, Bayesian Optimization (BO) digunakan sebagai metode pencarian hyperparameter terbaik. Dari hasil percobaan dan pengujian yang diajukan, model Adaboost dapat memberikan nilai testing f1-score dan recall sebesar 0,661 dan 0,653 pada pelatihan dengan dataset tidak seimbang. Model Adaboost-SMOTE mempunyai nilai testing f1-score dan recall sebesar 0,646 dan 0,826. Penggunaan optimasi Bayesian Optimization pada model Adaboost-SMOTE dapat menaikkan testing f1-score dan recall menjadi 0,649 dan 0,849. Tes ANOVA dan Tukey HSD mengungkapkan variasi yang signifikan dalam hasil pelatihan dari model machine learning, dan menyoroti dampak penggunaan data seimbang dalam pelatihan model yang signifikan.

Customer churn is a severe problem in various sectors, including telecommunications. Customer churn refers to discontinuing the service, switching to another provider, or not renewing the contract. To deal with churn risk, telecommunication companies need to use predictive models with the help of machine learning methods. Several churn prediction models have been proposed by researchers, including the selection of suitable algorithms and data sets for case studies. In this thesis, research is conducted using the IBM Telco Customer Churn dataset. A common challenge in classification is data imbalance, which can lead to failure in predicting minority classes. Therefore, this thesis using several data augmentation techniques, such as SMOTE, HAT, and CVAE, for balancing data technique. Ensemble learning, especially the CART (Classification and Regression Tree) method, is often used to solve classification and regression problems. Adaboost is an ensemble learning algorithm that uses decision trees as the basis for learning. In the Adaboost model training, Bayesian Optimization (BO) is used to find the best hyperparameters. From the trials and tests carried out, Adaboost achieved an f1-score and recall test of 0.661 and 0.653, respectively, in training with an unbalanced dataset. The Adaboost SMOTE model achieved f1 and memory test scores of 0.646 and 0.826, respectively. Using Bayesian Optimization in the Adaboost SMOTE model increased the testing f1-score and recall scores to 0.649 and 0.849, respectively. ANOVA and Tukey HSD tests reveal significant variation in machine learning model training results and highlight the considerable impact of using balanced data in model training."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Furqon Amdan
"ABSTRAK
Pegembangan teknologi pada industri nasional diarahkan untuk mengejar ketertinggalan dari negara lain. Keinginan pemrintah untuk dapat mandiri dalam memproduksi Alutsista dan sarana pertahanan perlu ditindak lanjuti dengan memberdayakan industri nasional dalm negeri. Badan Penelitian dan Pengembangan Kementerian Pertahanan saat in tengah melaksanakan penelitian dan pengembangan roket melalui konsorium yang melibatkan Lembaga Penerbangan dan Antariksa Nasional (LAPAN), PT. Pindad (Persero), PT. Dirgantara Indonesia (Persero), dan Kementerian Riset dan Teknologi (Kemenristek). Untuk pelaksanaan uji coba roket tersebut dibutuhkan daerah uji coba peluncuran."
Jakarta: Badan Penelitian dan Pengembangan Kementrian Pertahanan RI, 2019
355 JIPHAN 5:1 (2019)
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>