Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 93329 dokumen yang sesuai dengan query
cover
"Text-to-speech research in several languages in under development, and has reached a satisfactory result in certain language. But, some problems in text-to-speech have not been completely solved yet...."
Artikel Jurnal  Universitas Indonesia Library
cover
Ersy Veronita
"ABSTRAK
Penelitian ini membahas efektivitas media video berseri dalam buku ajar Tendances dalam pembelajaran keterampilan berbicara Bahasa Prancis. Adapun rumusan masalah dan tujuan penelitian ini ada dua yaitu menganalisis efektivitas media video berseri dalam pembelajaran keterampilan berbicara dan menganalisis persepsi siswa yang menggunakan media video berseri dalam pemelajaran keterampilan berbicara Bahasa Prancis mereka. Metodologi penelitian yang digunakan dalam penelitian ini adalah Penelitian Tindakan Kelas menggunakan dua siklus dengan 30 subjek penelitian yang mempelajari Bahasa Prancis pada tingkat A2. Penelitian dilakukan selama empat bulan dengan total 15 pertemuan. Data penelitian yang digunakan dalam penelitian ini adalah data kuantitatif seperti pre-test, progress-test dan post-test serta data kualitatif seperti kuesioner awal, kuesioner akhir, jurnal pelajar dan wawancara. Seluruh kuantitatif dianalisis menggunakan Repeated Measures Anova. Hasil penelitian ini menunjukkan kelebihan dan kekurangan media video berseri, efektivitas media ajar itu dalam pembelajaran keterampilan berbicara Bahasa Prancis serta faktor-faktor yang harus dipertimbangkan dalam menggunakan media ajar itu.

ABSTRACT
This research discusses the effectiveness of video series media in textbooks Tendances in teaching French speaking skills. The research questions and the research purposes of this study are analyzing the effectiveness of video series media in teaching French speaking skills and analyzing the perceptions of students who use video series media in learning their French speaking skills. The research methodology used in this study is Action Research using two cycles with 30 research subjects studying French at A2 level. The study was conducted over four months with a total of 15 meetings. The research data used in this study are quantitative data such as pre-test, progress-test and post-test as well as qualitative data such as the initial questionnaire, final questionnaire, student journal and interview. All quantitative data were analyzed using Repeated Measures Anova. The results of this study indicate the advantages and disadvantages of video series media, the effectiveness of the media in teaching French speaking skills and the factors that must be considered for using the media."
Depok: Fakultas Ilmu Pengetahuan dan Budaya Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sigit Pramono
"ABSTRAK
Tesis ini membahas hubungan antara strategi komunikasi dan keterampilan berbicara peserta program Bahasa Indonesia untuk Penutur Asing BIPA level madya. Penelitian ini berancangan kualitatif. Data penelitian diambil dengan merekam tuturan peserta dalam ujian berbicara. Taksonomi D rnyei dan Scott 1997 serta tahapan keterampilan berbicara Corder 1973 digunakan untuk menganalisis data penelitian. Hasil penelitian menunjukkan bahwa keterbatasan perbendaharaan kata merupakan hambatan komunikasi utama bagi peserta selain tekanan waktu, performa peserta, dan performa kawan tutur. Selain itu, keterampilan berbicara peserta dapat dijelaskan berdasarkan strategi komunikasi yang mereka gunakan.

ABSTRACT
This thesis examines the corelation of communication strategies and speaking skills of the Indonesian Foreign Speakers program BIPA at intermediate level. This study implemented a qualitative method. Data were colected by recording their speech in the speaking test. D rnyei Scott rsquo s 1997 taxonomy and Corder rsquo s 1973 speaking skills stages were used in this research. The research findings indicate that the limited vocabulary is the main communicative barriers. In addition, the other problems are the pressures of time, the participants performance, and the adresse performance. Thus, the speaking skills of participants can be explained based on their communication strategies. "
2016
T49106
UI - Tesis Membership  Universitas Indonesia Library
cover
"The essays in this volume are all original contributions dealing in one way or another with the analysis of prosody - primarily intonation and rhythm, and the role it plays in everyday conversation. They take as their methodological starting-point the contention that the study of prosody must begin with genuine interactional rather than pre-fabricated laboratory data. Through close empirical analysis of recorded material from genuine English, German and Italian conversations, prosody emerges here as a strategy deployed by interactants in the management of turntaking and floor-holding; in the negotiation of conversational activities such as repair, assessments, announcements, reproaches and news receipts; and in the keying of the tone or modality of interactional sequences."
Cambridge, UK: Cambridge University Press, 1996
e20393605
eBooks  Universitas Indonesia Library
cover
Féry, Caroline
"This book provides a state-of-the-art survey of intonation and prosodic structure from a phonological perspective. It explores topics such as individual tones and how they combine, how information This book provides a state-of-the-art survey of intonation and prosodic structure. Taking a phonological perspective, it shows how morpho-syntactic constituents are mapped to prosodic constituents according to well-formedness conditions. Using a tone-sequence model of intonation, it explores individual tones and how they combine, and discusses how information structure affects intonation in several ways, showing tones and melodies to be 'meaningful' in that they add a pragmatic component to what is being said. The author also shows how despite a superficial similarity, languages differ in how their tonal patterns arise from tone concatenation. Lexical tones, stress, phrase tones, and boundary tones are assigned differently in different languages, resulting in great variation in intonational grammar, both at the lexical and sentential level. The last chapter is dedicated to experimental studies of how we process prosody. The book will be of interest to advanced students and researchers in linguistics, and particularly in phonological theory."
Cambridge: Cambridge University Press, 2017
414.6 FER i
Buku Teks SO  Universitas Indonesia Library
cover
Féry, Caroline
"This book provides a state-of-the-art survey of intonation and prosodic structure from a phonological perspective. It explores topics such as individual tones and how they combine, how information This book provides a state-of-the-art survey of intonation and prosodic structure. Taking a phonological perspective, it shows how morpho-syntactic constituents are mapped to prosodic constituents according to well-formedness conditions. Using a tone-sequence model of intonation, it explores individual tones and how they combine, and discusses how information structure affects intonation in several ways, showing tones and melodies to be 'meaningful' in that they add a pragmatic component to what is being said. The author also shows how despite a superficial similarity, languages differ in how their tonal patterns arise from tone concatenation. Lexical tones, stress, phrase tones, and boundary tones are assigned differently in different languages, resulting in great variation in intonational grammar, both at the lexical and sentential level. The last chapter is dedicated to experimental studies of how we process prosody. The book will be of interest to advanced students and researchers in linguistics, and particularly in phonological theory."
Cambridge: Cambridge University Press, 2017
414.6 FER i
Buku Teks SO  Universitas Indonesia Library
cover
Derni Ageng
"Perkembangan Internet Of Things (IoT) pada era saat ini sudah semakin berkembang. Jumlah IoT device sudah mencapai 31 miliar perangkat yang tersebar di dunia. IoT adalah suatu objek yang memiliki kemampuan untuk mengirimkan data melalui jaringan tanpa memerlukan interaksi manusia ke manusia atau manusia ke computer. Dalam perkembangannya, dibutuhkannya teknologi Machine Learning untuk mendukung fitur-fitur yang ada pada IoT device, seperti prediksi konsumsi energi pada perangkat IoT. Machine learning diperlukan untuk mempelajari behaviour yang ada pada mesin yang diterjemahkan menjadi kondisi atau kata kata lain yang mencerminkan behaviour tersebut. Dalam implementasinya membutuhkan neural network yang didalamnya terdapat memory untuk mengingat behaviour tersebut sehingga proses learning dari alat menjadi cepat atau disebut dengan Recurrent Neural Network (RNN). Dengan tujuan dapat mengetahui dan memprediksi dari suatu nilai agar dapat memperkirakan besar konsumsi energi yang berakibat pada kenaikkan penggunaan listrik perkapita dalam negeri. Salah satu arsitektur dari RNN yaitu LSTM dapat digunakan untuk menjawab permasalahan. Data yang digunakan berasal dari sebuah alat dispenser. Hasil pengujian LSTM mencapai kategori baik dengan mendapatkan RMSE sebesar 3.9265.

The development of the Internet of Things (IoT) has increasingly developed many features. The number of IoT devices has reached 31 billion devices spread across the world. IoT is an object that has the ability to transfer data over a network without requiring human-to-human or human interaction to a computer. In its development, Machine Learning technology is needed to support features that exist on IoT devices, such as power predictions on IoT devices. Machine learning is needed to study the behaviors that exist on the machine which are translated into conditions or other words that reflect that behavior. For the implementation requires a neural network in which there is memory to remember the behavior so that the learning process of the tool becomes fast or called Recurrent Neural Network (RNN). The purpose of this research is to predict values from consumption energy, which related to average energy consumption on current country. One of the architectures of the RNN, namely LSTM can be used to answer the problem. The data comes from a smart dispenser. The LSTM test results reached a good category by getting RMSE of 3.9265.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raven Ginola Imanuel
"Mata merupakan salah satu dari panca indra yang digunakan untuk melihat dan menjadi aset terpenting dalam hidup manusia. Salah satu bagian terpenting dari mata ialah kelopak mata di mana terdapat sebuah kelenjar yang disebut kelenjar meibom. Kelenjar ini berada pada lapisan air mata yang berguna untuk menyekresikan komponen minyak atau lipid dan berperan penting dalam memperlambat proses evaporasi yang menyebabkan terjaganya kelembapan pada mata. Kekurangan kelenjar meibom yang dikenal sebagai Disfungsi Kelenjar Meibom (DKM) merupakan penyebab utama dari penyakit mata kering. Karena proses diagnosis yang dikerjakan oleh tenaga medis terbilang subjektif, maka penelitian ini menggunakan pendekatan deep learning untuk melakukan klasifikasi pada tingkat keparahan dari DKM. Klasifikasi dilakukan dengan membagi tingkat keparahan atau kehilangan kelenjar meibom berdasarkan hasil meiboscore-nya menjadi 4 kelas, yaitu kelas 0 untuk meiboscore ≤ 25%, kelas 1 untuk 25% < meiboscore ≤ 50%, kelas 2 untuk 50% < meiboscore ≤ 75%, dan kelas 3 untuk meiboscore  > 75%. Metode deep learning yang digunakan adalah Convolutional Neural Network (CNN) dengan arsitektur AlexNet. Data yang digunakan pada penelitian ini adalah 139 citra meibography yang bersumber dari Rumah Sakit Ciptomangunkusumo (RSCM) Departemen Kirana dari 35 pasien mata kering yang sudah mengalami augmentasi dan segmentasi, sehingga data akhir yang digunakan yaitu sebanyak 417 citra segmentasi. Pada tahap pre-processing, dilakukan perhitungan meiboscore dengan bantuan software dan membaginya ke dalam 4 kelas sesuai dengan nilai meiboscore­-nya. Citra yang sudah dilabel ini kemudian dibagi menjadi 80% data training dan 20% data testing. Dari 80% data training, diambil 10% untuk dijadikan data validation, sehingga 417 data tersebut terbagi menjadi 299 data training, 84 data testing, serta 34 data validation. Training model dilakukan menggunakan arsitekur AlexNet dengan hyperparameter berupa epoch sebanyak 100, batch size 32, dan learning rate 0,0001. Pada arsitektur ini juga diterapkan fungsi optimasi yaitu Adam (Adaptive moment estimation) dan fungsi loss categorical cross entropy. Proses modelling dilakukan sebanyak 5 kali percobaan dan memperoleh nilai rata-rata akurasi training dan validation sebesar 99,59% dan 99,41% dan nilai dari loss training dan loss validation sebesar 0,1259 dan 0,0524. Sedangkan rata-rata kinerja testing model berhasil memperoleh akurasi testing sebesar 87,38%; testing loss sebesar 0,5151; dan Area Under Curve (AUC) sebesar 0,9715.

The eye is one of the five senses used to see and is the most important asset in human life. One of the most important parts of the eye is the eyelid where there is a gland called meibomian gland. This gland is located in the tear film which is useful for secreting oil or lipid components and plays an important role in slowing down the evaporation process which leads to maintaining moisture in the eye. Meibomian gland deficiency, known as Meibomian Gland Dysfunction (MGD), is a major cause of dry eye disease. Since the diagnosis process carried out by medical personnel is subjective, this study uses a deep learning approach to classify the severity of MGD. Classification is done by dividing the severity or loss of meibomian glands based on meiboscore results into 4 classes, namely class 0 for meiboscore ≤ 25%, class 1 for 25% < meiboscore ≤ 50%, class 2 for 50% < meiboscore ≤ 75%, and class 3 for meiboscore > 75%. The deep learning method used is Convolutional Neural Network (CNN) with AlexNet architecture. The data used in this study are 139 meibography images sourced from Ciptomangunkusumo Hospital (RSCM) Kirana Department from 35 dry eye patients that have undergone augmentation and segmentation, so that the final data used is 417 segmentation images. In the pre-processing stage, meiboscore was calculated with the help of software and divided into 4 classes according to the meiboscore value. The labeled images were then divided into 80% training data and 20% testing data. From 80% of the training data, 10% is taken to be used as validation data, so that the 417 data is divided into 299 training data, 84 testing data, and 34 validation data. The training model is carried out using the AlexNet architecture with hyperparameters in the form of epochs of 100, batch size 32, and learning rate 0,0001. In this architecture, the optimization function Adam (Adaptive moment estimation) and categorical cross entropy loss function are also applied. The modeling process was carried out 5 times and obtained an average training and validation accuracy value of 99,59% and 99,41% and the value of training loss and validation loss of 0,1259 and 0,0524. While the average performance of the testing model successfully obtained a testing accuracy of 87,38%; testing loss of 0,5151; and Area Under Curve (AUC) of 0,9715.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yumna Pratista Tastaftian
"Speech Emotion Recognition adalah teknologi yang mampu bisa mendeteksi emosi lewat data suara yang diproses oleh sebuah mesin. Media yang sering digunakan untuk menjadi media interaksi antara 2 orang atau lebih yang saat ini sedang digunakan oleh banyak orang adalah Podcast, dan Talkshow. Seiring berkembangya SER, penelitian terakhir menunjukkan bahwa penggunaan metode Deep Learning dapat memberikan hasil yang memuaskan terhadap sistem SER. Pada penelitian ini akan diimplementasikan model Deep Learning yaitu dengan Recurrent Neural Network (RNN) variasi Long Short Term Memory (LSTM) untuk mengenali 4 kelas emosi (marah, netral, sedih, senang). Penelitian ini menguji model yang digunakan untuk mengenali emosi dari fitur akustik pada data secara sekuensial. Skenario training dan testing dilakukan dengan metode one-against-all dan mendapatkan hasil (1) Dataset talkshow mengungguli dataset podcast untuk tipe 1 dan 2 dan untuk semua emosi yang dibandingkan; (2) Untuk dataset podcast pada emosi marah, senang, dan sedih didapatkan akurasi optimal pada dataset tipe 1 yaitu 67.67%, 71.43%, dan 68,29%, sedangkan untuk emosi netral didapatkan akurasi terbaik pada dataset tipe 2 dengan 77.91%; (3) Untuk dataset talkshow pada emosi marah, netral, dan sedih didapatkan akurasi terbaik pada dataset tipe 2 yaitu 78.13%, 92.0%, dan 100%. Dapat disimpulkan bahwa dataset talkshow secara garis besar memberikan hasil yang lebih optimal namun memiliki variasi data yang lebih sedikit dari dataset podcast. Dari sisi panjang data, pada penelitian ini didapatkan akurasi yang lebih optimum pada dataset dengan tipe 2.

Speech Emotion Recognition is a technology that is able to detect emotions through voice data that is processed by a machine. Media that is often used to be a medium of interaction between two or more people who are currently being used by many people are Podcasts, and Talkshows. As SER develops, recent research shows that the use of the Deep Learning method can provide satisfactory results on the SER system. In this study a Deep Learning model will be implemented, this study uses Long Short Term Memory (LSTM) as one of the variation of Recurrent Neural Network (RNN) to recognize 4 classes of emotions (angry, neutral, sad, happy). This study examines the model used to recognize emotions from acoustic features in sequential data. Training and testing scenarios are conducted using the one-against-all method and get results (1) The talkshow dataset outperforms the podcast dataset for types 1 and 2 and for all emotions compared; (2) For the podcast dataset on angry, happy, and sad emotions, the optimal accuracy in type 1 dataset is 67.67%, 71.43%, and 68.29%, while for neutral emotions the best accuracy is obtained in type 2 dataset with 77.91%; (3) For the talkshow dataset on angry, neutral, and sad emotions the best accuracy is obtained for type 2 datasets, namely 78.13%, 92.0%, and 100%. It can be concluded that the talkshow dataset in general gives more optimal results but has fewer data variations than the podcast dataset. In terms of data length, this study found more optimum accuracy in dataset with type 2."
Depok: Fakultas Ilmu Kompter Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Oka Uliandana
"ABSTRAK
Pengenalan wajah merupakan salah satu topik pada ilmu pengolahan citra yang sering dikembangkan. Salah satu dari metode pengenalan wajah ialah dengan menggunakan jaringan saraf tiruan. Jaringan saraf tiruan mengenali wajah-wajah dengan cara mempelajari wajah-wajah yang disediakan untuk pembelajaran. Metode pembelajaran yang digunakan pada tulisan ini ialah dengan lapisan tersembunyi berbentuk hemisfer yang merupakan pengembangan dari metode
backpropagation dengan data masukan yang direduksi oleh algoritma PCA. Metode ini menggunakan informasi sudut wajah pada citra sebagai parameter masukan selain data citra wajah tersebut. Seiring dengan majunya teknologi pengambilan gambar, metode ini dapat digunakan untuk mengenali wajah secara tiga dimensi.

ABSTRACT
Face recognition is one of most discussed topics in image processing. A method used for face recognition is using artificial neural networks. Artificial neural network recognizes faces by learning the faces given to train. The learning method proposed in this paper is using hemispheric structure hidden layer which is an improvement of backpropagation algorithm with reduced data as input using principal component analysis algorithm. This method needs face’s angle on the image as parameter inputs instead of only face data. As the technology of capturing image growing, this method can be applied as an algorithm for 3D face recognition."
[, Fakultas Teknik Universitas Indonesia], 2015
S59789
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>