Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 18167 dokumen yang sesuai dengan query
cover
Lieberman, Philip
Cambridge, UK: Cambridge University Press, 1988
612.78 LIE s
Buku Teks SO  Universitas Indonesia Library
cover
"When we speak, we configure the vocal tract which shapes the visible motions of the face and the patterning of the audible speech acoustics. Similarly, we use these visible and audible behaviors to perceive speech. This book showcases a broad range of research investigating how these two types of signals are used in spoken communication, how they interact, and how they can be used to enhance the realistic synthesis and recognition of audible and visible speech. The volume begins by addressing two important questions about human audiovisual performance: how auditory and visual signals combine to access the mental lexicon, and where in the brain this and related processes take place. It then turns to the production and perception of multimodal speech, and how structures are coordinated within and across the two modalities. Finally, the book presents overviews and recent developments in machine-based speech recognition and synthesis of AV speech."
Cambrige: Cambridge University Press;, 2012
e20372261
eBooks  Universitas Indonesia Library
cover
Malden, MA: Blackwell Publishing, 2005
R 401.9 HAN
Buku Referensi  Universitas Indonesia Library
cover
Byrd, Dani
Chichester: Wiley-Blackwell, 2010
302.224 2 BYR d
Buku Teks SO  Universitas Indonesia Library
cover
Chichester: Wiley Blackwell, 2015
612.78 HAN
Buku Teks SO  Universitas Indonesia Library
cover
Gillam, ronald B.
Singapore: Jones and Bartlett Learning, 2011
616.855 GIL c ;616.855 GIL c (2)
Buku Teks SO  Universitas Indonesia Library
cover
Tansa Trisna Astono Putri
"ABSTRAK
Kebebasan berpendapat melalui media sosial untuk mengungkapkan pikiran, pendapat dan tanggapan terhadap suatu topik tertentu menimbulkan dampak negatif berupa konten yang menebarkan kebencian. Penelitian ini bertujuan untuk melakukan deteksi sebuah informasi yang merupakan ujaran kebencian di media sosial Twitter. Data yang digunakan berjumlah 4.002 data sentimen terkait topik politik, agama, suku dan ras di Indonesia. Pada pembangunan model, penelitian ini menggunakan metode klasifikasi sentimen dengan algoritma machine learning seperti Na ve Bayes, Multi Level Perceptron, AdaBoost Classifier, Random Forest Decision Tree dan Support Vector Machine SVM . Di samping itu, penelitian ini juga melakukan perbandingan performa model dengan menggunakan unigram, bigram dan unigram-bigram dalam proses fitur ekstraksi dan penggunaan SMOTE untuk mengatasi imbalanced data. Evaluasi dari percobaan yang dilakukan menunjukkan bahwa algoritma AdaBoost menghasilkan model terbaik dengan nilai recall tertinggi yaitu 99.5 yang memiliki nilai akurasi sebesar 70.0 dan nilai F1-score sebesar 82.2 untuk klasifikasi ujaran kebencian apabila menggunakan bigram.

ABSTRACT
Freedom of expression through social media to express idea, opinion and view about current topic causes negative impact as the rise of hateful content. This study aims to detect a hate speech information through Twitter. Dataset of this study consists of 4.002 sentiment data related to politic, race, religion and clan topic. The model development of this study conducted by sentiment classification method with machine learning algorithm such as Na ve Bayes, Multi Level Perceptron, AdaBoost Classifier, Random Forest Decision Tree and Support Vector Machine SVM . We also conduct a comparison of model performance that used unigram, bigram, unigram bigram feature and SMOTE to handle imbalanced data. Evaluation of this study showed that AdaBoost algorithm resulted the best classification model with the highest recall model which was 99.5 , accuracy score as much as 70.0 and F1 score 82.2 to classify hate speech when using bigram features."
2018
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Hanifuddin Malik
"ABSTRAK
Penelitian ini melaporkan tingkat keberhasilan dari sistem speech recognition yang diimplementasikan ke dalam quadcopter sebagai kendali geraknya. Pada sistem speech recognition digunakan metode mel frequency cepstral coefficient MFCC sebagai feature extraction yang kemudian akan di-training menggunakan metode recursive neural network RNN . Metode MFCC sendiri merupakan salah satu metode feature extraction yang paling banyak digunakan untuk speech recognition. Metode tersebut memiliki tingkat keberhasilan yang cukup besar sekitar 80 - 95 . Pada penelitian ini akan digunakan database yang sudah ada dan database yang baru. Database yang sudah ada akan digunakan sebagai media pengukur tingkat keberhasilan metode RNN. Database yang baru akan dibuat menggunakan bahasa indonesia dan kemudian dibandingkan tingkat keberhasilannya dengan hasil dari database yang sudah ada. Suara yang masuk dari microphone akan diolah pada laptop yang telah memiliki modul DSP dengan metode MFCC untuk mendapatkan nilai karakteristiknya. Nilai karakteristik tersebut kemudian akan di-training menggunakan RNN yang hasilnya berupa perintah. Perintah tersebut akan menjadi input kendali bagi single board computer SBC yang hasilnya berupa pergerakan quadcopter.

ABSTRACT
This research reports a success rate of speech recognition systems that are implemented into quadcopter as motion control. Speech recognition system is using mel frequency cepstral coefficient method MFCC as feature extraction that will be trained using recursive neural network method RNN . MFCC method is one of the feature extraction method that most used for speech recognition. This method has a success rates about 80 95 . This research will use the existing database and the new database. Existing database will be used for measure the success rate of RNN method. The new database will be created using Indonesian language and then the success rate will be compared with results from an existing database. Sound input from the microphone will be processed on a laptop that has a DSP module with MFCC method to get the characteristic values. The characteristic values then will be trained using the RNN which result is command. The command will become a control input to the single board computer SBC which result is the movement of quadcopter."
2017
S67037
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gilliam, Ronald B.
"Communication Sciences and Disorders: From Science to Clinical Practice is included in the 2015 edition of the essential collection of Doody’s Core Titles. Communication Sciences and Disorders: From Science to Clinical Practice is an excellent introductory text for undergraduate students enrolled in their first course in communication sciences and disorders. Written by experts in the field, this text contains basic information about speech disorders that are related to impairments in articulation, voice, and fluency; language disorders in children and adults; and hearing disorders that cause conductive and sensorineural hearing losses. It includes basic information on the speech, language, and hearing sciences and practical information about assessment and intervention practices. Unlike some other introductory text books, this book also includes chapters on multicultural issues, deafness, dysarthria, and dysphagia."
Sudburry, Mass.: Jones and Bartlett Publishers, 2011
616GILC001
Multimedia  Universitas Indonesia Library
cover
Haworth, Alan
London: Routledge, 1998
323.440 1 HAW f
Buku Teks SO  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>