Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 53395 dokumen yang sesuai dengan query
cover
Eko Ihsanto
"Terkait klasifikasi detak elektrokardiogram (EKG), telah dikembangkan banyak algoritma, baik yang terkait dengan biomedik, maupun biometrik. Karena sifat non-stasioner dari sinyal EKG, agak sulit untuk menggunakan metode tradisional yang dioptimasi secara manual, misalnya ekstraksi fitur dan klasifikasi yang berbasis waktu. Hal ini membuka peluang untuk implementasi mesin cerdas. 
Penelitian ini menyajikan metode baru, yaitu Residual Depthwise Separable Convolutional Neural Network (RDS-CNN) untuk klasifikasi detak elektrokardiogram, baik yang terkait dengan biomedik, maupun biometrik. Dengan menggunakan metode ini, hanya diperlukan dua tahap proses saja, yaitu deteksi detak dan klasifikasi. Pemrosesan awal dilakukan bersamaan dengan deteksi detak, sedangkan ekstraksi fitur dilakukan sekaligus dengan klasifikasi. Selain itu, untuk meminimalkan beban komputasi dan tetap menjaga kualitas klasifikasi, beberapa teknik telah diterapkan, antara lain Residual Network, All Convolutional Network (ACN), Depthwise Separable Convolution (DSC), dan Batch Normalization (BN). Kinerja RDS-CNN ini telah dievaluasi menggunakan database aritmia Massachusetts Institute of Technology - Beth Israel Hospital (MIT-BIH) dan database ECG-ID. 
Untuk implementasi biomedik, dalam fase pelatihan model Depthwise Separable CNN ini, digunakan sekitar 22% dari 110.057 detak yang diekstraksi dari 48 file dalam database MIT-BIH. Dengan hanya menggunakan 22% data latih ini, algoritma yang kami usulkan dapat mengklasifikasi 78% detak lainnya menjadi 16 kelas. Adapun, sensitifitas, spesifisitas, prediksi positif dan akurasi masing-masing adalah 99,03%, 99,94%, 99,03%, dan 99,88%. Hasil klasifikasi biomedik ini menunjukkan bahwa metode yang disajikan ini mengungguli metode terdepan lainnya. 
Sedangkan untuk implementasi biometrik, model RDS-CNN telah terbukti dapat digunakan untuk otentifikasi identitas EKG (ID) 90 orang sehat dan 48 pasien dengan akurasi hingga 100%, melalui klasifikasi 8 detak otentifikasi untuk ID 90 orang sehat, dan 6 detak otentifikasi untuk ID 48 pasien. Hasil otentifikasi biometrik ini juga mengungguli metode terdepan lainnya yang menggunakan database yang sama.

Regarding the classification of electrocardiogram (ECG) beats, many algorithms have been developed, both related to biomedical, and biometrics. Due to the non-stationary nature of ECG signals, it is complicated to use traditional methods that are manually optimized, for example, time-based feature extraction and classification. This computation problem opens up opportunities for machine learning implementation.
This research proposes a new method, namely Residual Depthwise Separable Convolutional Neural Network (RDS-CNN) for the classification of ECG beats, both related to biomedical, and biometrics. By using this method, only two stages of the process are needed, namely beat detection and classification. Preprocessing is done simultaneously within beat detection, while feature extraction is done simultaneously within the classification stage. Also, to minimize computational cost and to maintain classification quality, several techniques have been applied, including Residual Networks, All Convolutional Networks (ACN), Depthwise Separable Convolution (DSC), and Batch Normalization (BN). The performance of the RDS-CNN has been evaluated using the Massachusetts Institute of Technology - Beth Israel Hospital (MIT-BIH) arrhythmia database and the ECG-ID database.
For biomedical implementation, 110,057 beats were extracted from 48 files in the MIT-BIH database. And approximately 22% of them used for latih the Depthwise Separable CNN model. With only 22% of this latih data, our algorithm can classify 78% of the rest ECG beats into 16 classes. Meanwhile, sensitivity, specificity, positive prediction, and accuracy are 99.03%, 99.94%, 99.03%, and 99.88%, respectively. The results of this biomedical classification show that this proposed method outperforms the other state-of-the-art methods.
As for the biometric implementation, the RDS-CNN model has been proven to be able to authenticate ECG ID of 90 healthy people and 48 patients with up to 100% accuracy, through the classification of eight authentication beats for ID 90 healthy people, and six authentication beats for ID 48 patient. The results of this biometric authentication also outperform other state-of-the-art methods that use the same database.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Bayu Satria Persada
"Perkembangan Artificial Intelligence (AI) sudah berkembang pesat. Dari ketiga arah pengembangan AI yakni computer vision, speech processing dan natural language processing. Speech processing memiliki tren paling rendah di antara ketiga pengembangan tersebut. Meskipun begitu pengembangan di bidang speech processing seperti speech recognition dan keyword spotting sudah banyak di implementasikan seperti model keyword spotting menggunakan Convolutional Neural Network (CNN) di microcontroller, mobile device dan perangkat lainnya. Namun CNN saja belum tentu menghasilkan akurasi yang tinggi maka dicoba Depthwise Separable Convolutional Neural Network (DSCNN) untuk mendapatkan hasil dengan akurasi yang lebih tinggi. Pengembangan model keyword spotting belum banyak diimplementasikan di edge device lainnya, yang dimaksud dengan edge device yaitu perangkat sederhana di sisi pengguna yang kemampuan komputasinya terbatas. Dengan menggunakan DSCNN menunjukkan nilai F1 score yang dibandingkan dengan model CNN. Model DSCNN menghasilkan model dengan nilai F1 score paling optimal dengan 4 layer konvolusi depthwise separable, menggunakan filter konvolusi sebanyak 256 dengan jumlah filter konvolusi depthwise 512 menggunakan optimizer RMSprop dan menggunakan batch size berukuran 126. Dari hasil pengujian dapat diketahui bahwa secara umum DSCNN menghasilkan F1 score yang lebih baik dibandingkan CNN yaitu sebesar 31,8% dengan CNN sebesar 28,35%. Namun DSCNN menggunakan sumber daya yang lebih banyak dan lebih lama waktu responsnya.

The development of Artificial Intelligence (AI) has grown rapidly. Of the three directions of AI development, namely computer vision, speech processing, and natural language processing. Speech processing has the lowest trend among the three developments. However, many developments in speech processing such as speech recognition and keyword spotting have been implemented, such as the keyword spotting model using the Convolutional Neural Network (CNN) in microcontrollers, mobile devices, and other devices. However, CNN alone does not necessarily produce high accuracy, so a Depthwise Separable Convolutional Neural Network (DSCNN) is used to get results with higher accuracy. The development of the keyword spotting model has not been widely implemented in other edge devices, which is meant by edge devices, namely simple devices on the user's side with limited computing capabilities. Using DSCNN shows the F1 score which is compared with the CNN model. The DSCNN model produces a model with the most optimal F1 score with 4 layers of convolution depthwise separable, using a convolution filter of 256 with a convolution depthwise filter of 512 using the RMSprop optimizer and using a batch size of 126. From the test results, in general DSCNN produces F1 score which is better than CNN, which is 31,8% with CNN at 28,35%. However, DSCNN uses more resources and a longer response time."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hasbullah
"Survei Kesehatan Indonesia (SKI) tahun 2023 yang dilakukan oleh Kementerian Kesehatan (Kemenkes) ada sekitar 70 juta perokok aktif di Indonesia. Apabila dihitung dari populasi penduduk Indonesia ada 28,62% penduduk yang merokok di tahun 2023 dan persentase ini meningkat dari tahun sebelumnya sebanyak 0,36%. Perilaku merokok ini menyebabkan berbagai penyakit seperti penyakit paru-paru kronis, kerusakan gigi, penyakit mulut, stroke, serangan jantung, kanker rahim, gangguan mata, dan kerusakan pada rambut. Untuk menekan jumlah perokok di Indonesia, diperlukan sistem untuk deteksi perokok. Deteksi perokok saat ini memakan biaya yang mahal, bantuan ahli, dan sistem yang kompleks. Oleh karena itu, deep learning dengan algoritma Convolutional Neural Network hadir sebagai solusi untuk mengatasi masalah tersebut. Skripsi ini membahas bagaimana merancang sistem deep learning dengan Convolutional Neural Network (CNN) untuk keperluan deteksi wajah perokok. Skripsi ini juga membahas bagaimana pengaruh berbagai skenario jumlah data pelatihan dan data pengujian serta penambahan ekstraksi fitur wajah terhadap metrik evaluasi . Hasil dari rancangan dievaluasi dengan metrik evaluasi kalkulasi loss function, akurasi, dan F1 score. Hasil simulasi menunjukan skenario data pelatihan 70% dan data pengujian 30% adalah skenario terbaik dengan nilai metrik evaluasi pengujian pada skenario ini sebesar 2.236 untuk loss, 54.5% untuk akurasi, dan 34.9% untuk F1 score. Skenario ini diimprovisasi dengan adanya penambahan ekstraksi fitur perokok pada awal preprocessing yang ditandai dari penurunan loss sebesar 65.65%, peningkatan akurasi sebesar 19%, dan peningkatan F1 score sebesar 24.08%.

The 2023 Indonesian Health Survey (SKI) conducted by the Ministry of Health (Kemenkes) reported that there are approximately 70 million active smokers in Indonesia. This accounts for 28.62% of the Indonesian population in 2023, representing a 0.36% increase from the previous year. Smoking behavior leads to various diseases such as chronic lung disease, tooth damage, oral diseases, stroke, heart attacks, uterine cancer, eye disorders, and hair damage. To reduce the number of smokers in Indonesia, a smoker detection system is necessary. Current smoker detection methods are expensive, require expert assistance, and involve complex systems. Therefore, deep learning with Convolutional Neural Network (CNN) algorithms presents a solution to address these issues. This thesis discusses how to design a deep learning system using Convolutional Neural Networks (CNN) for smoker face detection. It also examines the impact of different training and testing data scenarios and the addition of facial feature extraction on evaluation metrics. The designed system is evaluated using metrics such as loss function calculation, accuracy, and F1 score. The simulation results show that a scenario with 70% training data and 30% testing data is the best scenario, yielding evaluation metric values of 2.236 for loss, 54.5% for accuracy, and 34.9% for F1 score. This scenario was improved with the addition of smoker feature extraction in the preprocessing stage, resulting in a 65.65% reduction in loss, a 19% increase in accuracy, and a 24.08% increase in F1 score."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Indra Riyanto
"Banjir di perkotaan merupakan bencana yang signifikan karena banyaknya penduduk yang terkena dampaknya. Dalam kebanyakan kasus, banjir terjadi bersamaan dengan hujan lebat, sehingga jika diamati dari satelit yang menggunakan sensor optik, daerah tersebut tertutup awan. Penelitan ini mengusulkan framework baru untuk klasifikasi banjir daerah perkotaan menggunakan sensor satelit penginderaan jauh Synthetic Aperture Radar (SAR) yang mempunyai kemampuan menembus awan. Framework ini dikembangkan untuk mengklasifikasi daerah banjir dengan mempertahankan variasi temporalnya. Studi kasus yang digunakan adalah wilayah Jakarta menggunakan metode 3D CNN multi-sensor pada data Sentinel-1 (S-1) multi-temporal dan curah hujan rata-rata Climate Hazard Infrared Precipitation Sensor (CHIRPS). Data terdiri atas 24 scene S-1 dengan polarisasi ganda VV dan VH antara bulan Maret 2019-Februari 2020 yang terdiri dari 20 citra co-polarized dan cross-polarized yang terdiri dari 2 citra co-event, 18 citra pre-event, dan 4 citra post-event sebagai testing data dan data curah hujan dari CHIRPS. Training dilakukan dengan menggunakan hyperparameter 150 epoch, batch size sebesar 100, learning rate sebesar 0,001 dan komposisi data set training/testing digunakan 80/20. Hasil pengujian 3D CNN memberikan rata-rata overall accuracy sebesar 70,3% dengan waktu pemrosesan 113 detik untuk setiap epoch. Dengan hasil tersebut metode 3D CNN diharapkan mampu membantu mengestimasi luas area banjir yang akurat dan mengidentifikasi daerah yang berpotensi mengalami banjir dalam rangka deteksi dini/pencegahan banjir kota-kota lain di masa mendatang.

Urban flooding is a significant catastrophe due to its widespread impact on the population. Typically, floods occur concurrently with heavy rainfall, rendering the affected area obscured by clouds when observed through optical sensors on satellites. To address this issue, a novel approach is proposed in this study, aiming to classify flooded urban areas using a remote sensing synthetic aperture radar (SAR) sensor on a satellite. Unlike optical sensors, SAR has the ability to penetrate clouds. The framework was developed by employing the 3D Convolutional Neural Network (CNN) method to preserve the temporal variability, which processed multi-temporal SAR data from Sentinel-1 (S-1) and average rainfall data from the Climate Hazards Infrared Precipitation Sensor (CHIRPS). The dataset used in this research comprised 24 S-1 scenes with Dual VV and VH polarization, covering the period between March 2019 and February 2020 divided into 2 co-event images, 18 pre-event images, and 4 post-event images, along with rainfall data from CHIRPS. The training phase employed hyperparameters of 150 epochs, batch size of 100, and learning rate at 0,001, with training/testing data split of 80/20. The 3D CNN achieved an average overall accuracy of 70.3%, with maximum accuracy at 71,4% and each epoch taking 113 seconds on average to process. These results demonstrate the potential of the 3D CNN method to accurately estimate the extent of flooding and identify areas at risk of flooding, thereby aiding early detection and flood prevention efforts in other cities in the future."
Depok: Fakultas Teknik Universitas Indonesia, 2023
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Ricad Ragapati Prihandini
"Kemajuan di bidang teknologi dan kecerdasan buatan memungkinkan inspeksi otomatis dapat dilakukan. Sebuah drone dilengkapi kamera yang dapat mengidentifikasi permasalahan struktur kapal seperti korosi akan membuat proses inspeksi kapal menjadi lebih efisien dari segi waktu dan biaya yang dibutuhkan sekarang. Pada studi ini dibuat model yang dilatih untuk dapat mengidentifikasi korosi secara otomatis dengan algoritma Convolutional Neural Network memanfaatkan metode transfer learning. MobileNetV2 dipilih sebagai artsitektur model klasifikasi yang memanfaatkan transfer learning dari ImageNet ke dalam dataset yang digunakan. Berdasarkan model yang telah dibuat model mencapai nilai akurasi training sebesar 92,86% dengan loss sebesar 0.0578 dan akurasi validasi sebesar 90,66% dengan loss sebesar 0.0091. Secara keseluruhan, model mempunyai performa yang baik dalam proses training maupun validasi dataset. Tidak ada indikasi overfitting berdasarkan kurva akurasi dan loss.

Advancements in technology and artificial intelligence make automated inspections become possible to do. A drone which is mounted with a camera identifying ship structural issues such as corrosion will make ship inspections become more efficient for a fraction of time and cost that is currently needed. In this study, a trained model is made in order to automatically identify corrosion using Convolutional Neural Network employing transfer learning method. MobileNetV2 is chosen as a classification model architecture which leverages transfer learning from ImageNet to the dataset. According to the data, the model achieved a training accuracy of 92,86% with loss 0.0578 and a validation accuracy of 90,66 with loss 0.0091. Overall, the model performs well on both the training and validation datasets. There is not any indication of overfitting based on their accuracy and loss curves."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Richard Tanoto
"Kemampuan berkomunikasi menggunakan bahasa isyarat sangat penting bagi kaum tunarungu dan tunawicara. Rendahnya persentase rakyat Indonesia yang menguasai bahasa isyarat menjadi latar belakang pengembangan aplikasi penerjemah Sistem Isyarat Bahasa Indonesia (SIBI) menjadi teks. Sistem penerjemah bahasa isyarat menjadi teks dikembangkan menggunakan MediaPipe Hands dengan konfigurasi default dan Convolutional Neural Network (CNN) sebagai classifier hasil recognition MediaPipe. Sistem tersebut diimplementasikan menjadi aplikasi berbasis Android untuk menerjemahkan bahasa isyarat SIBI menjadi teks secara real-time. Dari hasil pengujian sistem penerjemah yang dikembangkan menggunakan 3.803 data landmark tangan dengan rasio training, validation, dan testing sebesar 70:15:15, diperoleh tingkat akurasi model training sebesar 98.57% dengan tingkat akurasi model testing sebesar 92.59%. Aplikasi penerjemah SIBI menjadi teks dapat dijalankan secara real-time dengan jumlah frame kamera yang dapat diproses sekitar 20 frame per detik. Pada pengujian aplikasi dalam menerjemahkan SIBI menjadi teks, diperoleh akurasi sebesar 96.92%. Perbedaan gestur tangan yang ditangkap oleh kamera ketika berbahasa isyarat menjadi kekurangan pada aplikasi yang menyebabkan teks yang diterjemahkan kadang tidak sesuai. Saran untuk pengembangan lebih lanjut yaitu meningkatkan performa model SIBI dan menambah jumlah bahasa isyarat yang dapat diterjemah.

The ability to communicate with sign language becomes very important for disabilities who cannot hear or speak. The low percentage of Indonesian societies who are not able to understand Indonesian sign language becomes the background of the SIBI recognizer application development. SIBI recognizer system is developed using MediaPipe Hands with default configuration and Convolutional Neural Network (CNN) as the classifier of MediaPipe recognition result. The system is implemented to an Android based application project for real-time SIBI sign language to text recognition. The SIBI recognizer system model developed with 3.803 data of hand landmarks with training, validation, and testing ratio of 70:15:15 achieves the training accuracy of 98.57% and testing accuracy of 92.59%. The SIBI recognizer application can perform in real-time with average number of 20 frames per second. The application testing results in accuracy of 96.92%. The hand gesture difference caught by the camera when performing sign language becomes the drawback of the application, hence the translated text sometimes mismatched. Suggestions for the future development include improving SIBI model performance and increasing the number of sign languages to be translated."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Haris Isyanto
"Pencurian identitas menjadi ancaman kejahatan di dunia maya pada masa kini, khususnya transaksi online. Untuk mengatasi masalah tersebut, voice biometrics dikembangkan untuk keamanan identitas. Penelitian ini mengusulkan skema voice biometrics pada algoritma deep learning Convolutional Neural Network (CNN) Residual dan CNN Depthwise Separable Convolution (DSC) dengan fitur ekstraksi \hybrid Discrete Wavelet Transform (DWT) dan Mel Frequency Cepstral Coefficients (MFCC) serta mengembangkan pembuatan data suara untuk pengguna ber-Bahasa Indonesia dalam waktu 25 menit. Skema tersebut ditargetkan untuk meningkatkan kinerja akurasi. Penelitian ini mengembangkan 2 model simulasi yang terpisah, yaitu model CNN Residual dan CNN DSC. Untuk setiap pengujian model, hasilnya dibandingkan dengan CNN Standard. Hasil pengujian pertama menunjukkan kinerja terbaik, model CNN Residual ini mampu meningkatkan kinerja validasi akurasi training voice biometrics 98.6345%, presisi 99,91% dan akurasi 99,47% pada speaker recognition (siapa yang bicara?), serta akurasi speech recognition (apa yang diucapkan?) 100%. Hasil pengujian kedua menunjukkan kinerja terbaik, model CNN DSC ini mampu mengurangi kinerja training parameter dan mampu mempercepat kinerja waktu proses training voice biometrics menjadi 5,12 detik. Sehingga hasil kinerja tersebut dapat mengurangi beban komputasi dan lebih baik dalam kinerja akurasinya. Dapat disimpulkan bahwa CNN Residual dan CNN DSC telah mengungguli CNN Standard. Sehingga pengembangan skema voice biometrics dapat diaplikasikan untuk identifikasi dan verifikasi/autentikasi suara user secara akurat, efisien dan cepat untuk aplikasi keamanan identitas dalam transaksi perbankan.

Theft of identity is a threat to cybercrime today, especially online transactions. To overcome this problem, voice biometrics was developed for identity security. This research proposes a voice biometrics scheme on deep learning algorithms the CNN Residual and CNN Depthwise Separable Convolution (DSC) with Hybrid of Discrete Wavelet Transform (DWT) and Mel Frequency Cepstral Coefficients (MFCC) Feature Extraction and develops voice data establishment for Indonesian users within a short period of time 25 minutes. The scheme is targeted to improve accuracy performance. This research developed 2 separate models, i.e. CNN Residual and CNN DSC model. For each model testing, the results are compared with the CNN Standard. The results of the first testing show the best performance, the CNN Residual model is able to improve the performance of training accuracy validation on voice biometrics of 98.6345%, precision of 99.91% and accuracy of 99.47% on speaker recognition (who is speaking?), and accuracy on speech recognition (What is uttered?) of 100%. The results of the second testing show the best performance, the CNN DSC model is able to reduce the performance of training parameters and is able to accelerate the performance of the voice biometrics training process time to 5.12 seconds. So that the performance results can reduce the computational load and and better in its accuracy performance. It can be concluded that CNN Residual and CNN DSC have outperformed CNN Standard. So that the development of voice biometrics schemes can be applied for identification and verification/authentication of the user's voice accurately, efficiently and quickly for identity security applications in banking transactions."
Depok: Fakultas Teknik Universitas Indonesia, 2023
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Haryo Bimo Cokrokusumo
"Dalam penelitian ini, algoritma in-house berbasis RED-CNN disusun dan dilatih menggunakan citra fantom PMMA silinder berdiameter 26 cm pada lima nilai fluks simulasi noise berbeda (5,00 x 104, 7,50 x 104, 1,00 x 105, 1,50 x 105, dan 2,00 x 105). Model diuji pada citra fantom PMMA berbentuk ellips dengan ukuran 21 x 26 cm pada lima nilai fluks simulasi noise berbeda (5,00 x 104, 1,00 x 105, 1,50 x 105, 2,50 x 105, dan 5,00 x 105) untuk mengevaluasi kemampuan denoising dari model dengan menggunakan nilai signal to noise ratio (SNR), peak signal to noise ratio-desibel (PSNR-dB), structural similarity (SSIM) index, dan noise power spectrum (NPS) sebagai parameter. Evaluasi terhadap kemungkinan penurunan kualitas citra juga dilakukan dengan menguji model menggunakan citra fantom homogen dan citra fantom kawat yang diperoleh menggunakan lima nilai mAs berbeda (155 mAs, 200 mAs, 250 mAs, 275 mAs, dan 300 mAs). Hasil menunjukkan bahwa model dapat secara konsisten meningkatkan nilai SNR, PSNR-dB, SSIM dan spektrum noise yang terukur. Hasil yang diperoleh juga menunjukkan adanya kemungkinan citra mengalami over-smoothing apabila model diaplikasikan pada citra dengan tingkat noise lebih rendah, ditandai dengan adanya pergeseran puncak kurva NPS menuju frekuensi spasial rendah dan peningkatan nilai SNR, PSNR-dB, dan SSIM secara terus-menerus. Selain itu, tingkat noise dari data latih yang digunakan dalam proses pelatihan juga mempengaruhi performa akhir dari model. Pada penggunaan data latih dengan tingkat noise lebih rendah, penurunan nilai SNR, PSNR-dB, dan SSIM dan kenaikan kurva NPS yang terukur mengindikasikan tingkat noise lebih tinggi pada citra hasil supresi. Sementara itu, penggunaan data latih dengan tingkat noise lebih tinggi menyebabkan penurunan pada ketajaman citra yang ditandai dengan penurunan nilai frekuensi cut-off dari modulation transfer function (MTF 10%) hingga 45,41% dari citra awal.

In this study, an in-house RED-CNN-based algorithm was composed and trained using cylindrical PMMA phantom images with a diameter of 26 cm on five different noise simulation flux values (5,00 x 104, 7,50 x 104, 1,00 x 105, 1,50 x 105, and 2,00 x 105). The model was tested on 21 x 26 cm elliptical PMMA phantom images on five different simulated noise flux values (5,00 x 104, 1,00 x 105, 1,50 x 105, 2,50 x 105, and 5,00 x 105) to evaluate its denoising capability using signal to noise ratio (SNR), peak signal to noise ratio-decibel (PSNR-dB), structural similarity (SSIM) index, and noise power spectra (NPS) values as parameters. Evaluation on possible decrease of image quality was also performed by testing the model using homogenous phantom and wire phantom images acquired using five different mAs values (155 mAs, 200 mAs, 250 mAs, 275 mAs, and 300 mAs). Results show that the model was able to consistently increase SNR, PSNR-dB, SSIM values and the measured noise spectra. It is also shown that there exists a possibility of image over-smoothing when the model was applied on images with less noise, marked by the shift of the NPS curves towards lower spatial frequencies and the continuous increase of SNR, PSNR-dB, and SSIM. Moreover, the noise level of training data used in model training is shown to affect the final performance of the model. On the use of training data with lower noise level, the decrease of SNR, PSNR-dB, and SSIM, and the increase of NPS curves indicate higher noise level in suppressed images. Meanwhile, the use of training data with higher noise resulted on the decrease of denoised images sharpness, as indicated by an up to 45,41% decrease of modulation transfer function cut-off frequency (MTF 10%) from the original images."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bryan Indarto Giovanni Firjatulloh
"Kondisi pasca bencana adalah sebuah kondisi darurat yang membutuhkan pertolongan pertama dari tim penyelamat. Oleh karena itu, dikembangkan pemanfaatan radar yang digunakan untuk mendeteksi manusia dalam kondisi pasca-bencana. Sayangnya, banyaknya parameter yang mempengaruhi pengklasifikasian membatasi pemakaian radar 24 GHz seperti reruntuhan yang menutupi manusia. Oleh karena itu, radar dengan frekuensi yang lebih tinggi dimanfaatkan dengan frekuensi 77 GHz yaitu sinyal milimeter. Metode seperti deep learning dan backpropagation neural network sudah diterapkan pada penelitian-penelitian sebelumnya menggunakan radar sinyal milimeter. Namun, tingkat akurasi dari klasifikasi kelas dari makhluk hidup hanya mencapai 49% dengan jumlah klasifikasi 2 kelas dan 32% dengan jumlah klasifikasi 3 kelas. Oleh karena itu, dikembangkan kembali dengan metode Convolutional Neural Network. Akurasi yang didapatkan meningkat hingga mencapai 99% untuk klasifikasi 2 kelas dan 3 kelas. Namun akurasinya menurun untuk klasifikasi kelas yang lebih banyak hingga 68%. Skripsi ini mengajukan metode 3D-Convolutional Neural Network guna meningkatkan resolusi dari data yang diberikan dalam pelatihan dari model untuk meningkatkan akurasi pada klasifikasi kelas dengan model yang diajukan.

The post-disaster condition is an emergency that requires immediate first aid from rescue teams. Therefore, the use of radar has been developed to detect humans in post-disaster conditions. Unfortunately, the numerous parameters affecting classification, such as rubble covering humans, limit the use of 24 GHz radar. Consequently, higher frequency radar, specifically 77 GHz millimeter-wave signals, is utilized. Methods like deep learning and backpropagation neural networks have been applied in previous studies using millimeter-wave radar signals. However, the classification accuracy for living beings reached only 49% for two-class classification and 32% for three-class classification. Therefore, the method was further developed using Convolutional Neural Networks (CNN). The accuracy achieved improved to 99% for both two-class and three-class classifications, but it decreased to 68% for classifications with more classes. This thesis proposes the use of a 3D-Convolutional Neural Network method to enhance the resolution of the data used in model training, aiming to improve the accuracy of class classification with the proposed model."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bijak Rabbani
"Diabetik retinopati adalah komplikasi dari penyakit diabetes yang dapat mengakibatkan gangguan penglihatan bahkan kebutaan. Penyakit ini menjadi tidak dapat disembuhkan jika telah melewati fase tertentu, sehingga diagnosa sedini mungkin menjadi sangat penting. Namun, diagnosa oleh dokter mata memerlukan biaya dan waktu yang cukup besar. Oleh karena itu, telah dilakukan upaya untuk meningkatkan efisiensi kerja dokter mata dengan bantuan komputer. Deep learning merupakan sebuah metode yang banyak digunakan untuk menyelesaikan masalah ini. Salah satu arsitektur deep learning yang memiliki performa terbaik adalah residual network. Metode ini memiliki kelebihan dalam menghindari masalah degradasi akurasi, sehingga memungkinkan penggunaan jaringan yang dalam. Di sisi lain, metode persistent homology juga telah banyak berkembang dan diaplikasikan pada berbagai masalah. Metode ini berfokus pada informasi topologi yang terdapat pada data. Informasi topologi ini berbeda dengan representasi data yang didapatkan dari model residual network. Penelitian ini melakukan analisis terhadap penerapan persistent homology pada kerangka kerja residual network dalam permasalahan klasifikasi diabetik retinopati. Dalam studi ini, dilakukan eksperimen berkaitan dengan informasi topologi dan proses pengolahannya. Informasi topologi ini direpresentasikan dengan betti curve atau persistence image. Sementara itu, pada proses pengolahannya dilakukan ujicoba pada kanal citra, metode normalisasi, dan layer tambahan. Hasil eksperimen yang telah dilakukan adalah penerapan persistent homology pada kerangka kerja residual network dapat meningkatkan hasil klasifikasi penyakit diabetik retinopati. Selain itu, penggunaan betti curve dari kanal merah sebuah citra sebagai representasi informasi topologi memberikan hasil terbaik dengan skor kappa 0.829 pada data test.

Diabetic retinopathy is a complication of diabetes which can result in visual disturbance and even blindness. This disease becomes incurable after reaching certain phases, thus immidiate diagnosis is highly important. However, diagnosis by a professional ophthalmologist requires a great amount of time and cost. Therefore, efforts to increase the work efficiency of ophthalmologists using computer system has been done. Deep learning is a method that widely used to solve this particular problem. Residual network is one of deep learning architecture which has the best performance. The main advantage of residual network is its ability to prevent accuracy degradation, thus enabling the model to go deeper. On the other hand, persistent homology is also rapidly developing and applied in various fields. This method focus on the topological information of the data. This information are different with the data representation that extracted by neural network model. This study analyze the incorporation of persistent homology to residual networks framework for diabetic retinopati classification. In this study, experiments regarding about topological information and its process were carried out. The topological information is represented as betti curve or persistence image. Meanwhile, the experiments are analyzing the impact of image colour channel, normalization method, and additional layer. According to the experiments, application of persistent homology on residual network framework could improve the outcome of diabetic retinopathy classification. Moreover, the application of betti curve from the red channel as a representation of topological information has the best outcome with kappa score of 0.829."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>