Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 8 dokumen yang sesuai dengan query
cover
Fajri Vidian
"Proses gasifikasi pada updraft gasifier memiliki efisiensi yang tinggi, namun mempunyai masalah pada besarnya limbah tar yang dihasilkan. Untuk memecahkan permasalahan tersebut, maka diusulkan pengurangan tar pada updraft gasifier dengan metode resirkulasi eksternal gas pirolisis ke daerah pembakaran dan gas keluar dari side stream (daerah reduksi).
Penelitian ini dilaksanakan dengan metode percobaan dan simulasi, untuk kondisi aliran dingin dan aliran panas (gasifikasi). Percobaan dan simulasi aliran dingin dilakukan untuk mendapatkan dimensi ejektor dan posisi keluaran nosel ejektor yang paling baik pada jumlah aliran suction flow yang maksimal. Percobaan dan simulasi gasifikasi dilakukan pada empat konfigurasi updraft gasifier yaitu konfigurasi-1 (konvensional atau top gas), konfigurasi-2 (daerah reduksi atau side stream), konfigurasi-3 (top gas dan side stream) dan konfigurasi-4 (resirkulasi eksternal gas pirolisis ke daerah pembakaran) dengan kapasitas gasifier yang digunakan ± 6 kg/jam.
Dari percobaan dan simulasi computaional fluid dynamic aliran dingin dihasilkan dimensi ejektor yang dapat menarik suction fluid masksimum yaitu: diameter leher ejektor 0,75 cm, diameter ruang percampuran ejektor 5 cm dan panjang ruang percampuran 7,5 cm. Posisi keluaran nosel (NXP) -3 cm dibelakang posisi masuk ruang percampuran.
Dari percobaan gasifikasi diperoleh penurunan kandungan tar masing-masing konfigurasi dibandingkan kandungan tar konfigurasi-1 sebagai berikut konfigurasi-2: 27%, konfigurasi-3 (top gas): 8%, konfigurasi-3 (side stream): 50% dan konfigurasi-4: 85,9% (maksimum). Lower Heating Value gas produser maksimum sebesar 4,9 MJ/m3. Reaksi sekunder tar pada unggun bertemperatur tinggi memberikan kontribusi pada penurunan kandungan tar.
Peningkatan aliran resirkulasi gas pirolisis ke daerah pembakaran pada laju alir udara gasifikasi primer konstan cenderung meningkatkan konsentrasi gas H2, menurunkan konsentrasi gas CO dan kandungan tar. Sedangkan, peningkatan laju alir udara gasifikasi primer pada aliran resirkulasi gas pirolisis konstan, menyebabkan kondisi berlawanan yaitu cenderung menurunkan konsentrasi H2, meningkatkan konsentrasi CO dan tetapi juga menurunkan kandungan tar. Simulasi termodinamika gasifikasi memperkuat hasil percobaan yaitu peningkatan resirkulasi gas pirolisis ke daerah pembakaran, maka akan menyebabkan peningkatan komposisi H2 serta pengurangan komposisi CO dan kandungan tar.

Gasification process may be applied using an updraft or a downdraft approaches. Although the up-draft have higher efficiency than other, but it has problem with the amount of tar waste generated. To solve the problem, this research introduces the recirculation approach. This technique external recirculates the pyrolyse gas to combustion zone, and producer gas is taken at side stream or reduction zone outlet.
This study was conducted using experimental and simulations for cold and hot flow (gasification). The cold flow experimental and simulation computational fluid dynamic have done to get dimension of the nozel and nozel exit position (NXP) at condition maximum suction flow. The gasification experimental and simulation was conducted on four configuration of gasifier each: configuration-1 (top gas or conventional), configuration-2 (side stream or outlet at reduction zone), configuration-3 (combined top gas and side stream) and configuration-4 (external recirculation pyrolisis gas to combustion and gas outlet at side stream) at capacity gasifier was 6 kg/h.
The cold flow experimental and simulation results the ejector dimension that could drive suction flow maximum were the nozel throat diameter of 0,75 cm, the mixing chamber diameter of 5 cm and the length of mixing chamber of 7,5 cm. The nozel exit position (NXP) were gotten about -3 cm behind the position of entrance mixing chamber.
The gasification experimental result in the reduction content of tar of each configuration campared to configuration-1 as follow, configuration-2: 27%, configuration-3 (top gas): 8%, configuration-3 (side stream): 50,4% and configuration-3: 85,9% (maximum). The lower heating value of producer gas of 4,9 MJ/m3 at maximum. The result are due to secondary tar reaction over high temperature.
Increasing of recirculation pyrolisis gas to combustion zone tend to increase H2 concentration, decrease CO concentration and decrease tar content at primary air gasification constant. Increasing of primary air gasification at constant flow rate of pyrolisis gas tend to decrease of CO concentration, increase of H2 concentration and also decrease tar content.
The thermodynamic modeling confirm the result of experiment, where the increasing recirculation pyrolisis gas an increase of H2 composition, a decrease of CO composition and tar content.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
D1503
UI - Disertasi Membership  Universitas Indonesia Library
cover
Cahyadi
"Salah satu teknologi Carbon Capture Storage (CCS) untuk pada pembangkit listrik tenaga uap dengan batubara halus adalah teknologi pembakaran oxy-fuel. Didalam teknologi pembakaran oxy-fuel, batubara dibakar dalam campuran oksigen murni dan resirkulasi gas buang dengan kandungan gas CO2 yang tinggi. Pembakaran batubara didalam lingkungan O2 dan CO2 akan mempengaruhi kinerja pembakaran dibandingkan dengan lingkungan udara (O2/N2). Berdasarkan beberapa penelitian sebelumnya menunjukkan bahwa konsentrasi oksigen perlu dinaikkan sehingga kinerja pembakarannya sama dengan lingkungan udara. Pada disertasi ini dibahas tentang karakteristik penyalaan batubara dan pembakaran batubara didalam lingkungan oxy-fuel menggunakan TG-DTA (Thermo-Gravimetric Differential Thermal Analyzer) dan DTF (Drop Tube Furnace). Tiga jenis batubara Indonesia dengan peringkat lignit, sub-bituminus dan bituminus telah digunakan sebagai sampel batubara. Pengujian pembakaran batubara didalam TG-DTA dan DTF telah disuplai dengan udara tekan untuk lingkungan udara dan campuran gas 21%O2/79CO2 untuk lingkungan oxy-fuel. Hasil pengujian menunjukkan bahwa pelambatan penyalaan batubara terjadi dalam pembakaran oxy-fuel pada ketiga sampel tersebut. Laju pembakaran char didalam lingkungan oxy-fuel mengambil waktu lebih lama dibandingkan dalam lingkungan udara. Perbedaan dalam sifat fisik gas mempengaruhi penyalaan batubara dan karakteristik pembakaran.
Hasil karakterisasi pembakran dalam lingkungan udara dan oxy-fuel di TG-DTA menunjukkan adanya pelambatan pada pembakaran char. Ketika konenstrasi oksigen dinaikkan, profil DTA bergeser maju ke zona temperatur rendah, laju pembakaran meningkat dan waktu pembakaran lebih singkat. Penggunaan ukuran batubara yang lebih halus memberikan pengaruh puncak DTA menjadi lebih tinggi yang berarti temperatur batubara lebih tinggi. Laju pembakaran volatil menjadi lebih cepat dibandingkan ukuran kasar baik pada batubara lignit, sub-bituminus dan bituminus. Pada batubara lignit dan sub-bituminus dengan ukuran <44μm memiliki peluang untuk dibakar dalam lingkungan oxy-fuel dengan konsentrasi oksigen dibawah 30%, sedangkan pada batubara bituminus membutuhkan konsentrasi oksigen minimal 30% dengan pertimbangan puncak kurva DTA mirip di lingkungan udara.
Simulasi pada 2 (dua) jenis PLTU batubara dilakukan untuk mengevaluasi konsumsi energinya. PLTU tersebut adalah PLTU 400MW yang didisain dengan batubara sub-bituminus dan PLTU 700 MW yang didisain dengan batubara bituminus. Pembakaran dalam kondisi oxy-fuel telah dilakukan pada siklus uap pada masing-masing PLTU. Berdasarkan simulasi tersebut penurunan efisiensi PLTU dapat diketahui. Penurunan efisiensi pada PLTU 400 MW dalam lingkungan oxy-fuel 21%O2/79%CO2 dan 30%O2/70%CO2 adalah masing-masing 15.9%, dan 19.0%. Sedangkan pada PLTU 700 MW dalam lingkungan oxy-fuel 21%O2/79%CO2, dan 30%O2/70%CO2 adalah masing-masing 13.9%, dan 17.8 %. Kontribusi terbesar adalah konsumsi energi listrik pada ASU yang berkisar 20-30%. Berdasarkan uji pembakaran pada TG-DTA dan DTF, penggunaan batubara yang lebih halus dari 76 um (200 mesh) yaitu ukuran <44 um didalam PLTU oxy-fuel dapat mempunyai peluang pengurangan kebutuhan oksigen, sehingga penurunan efisiensi didalam PLTU oxy-fuel yang disebabkan konsumsi energi yang tinggi pada ASU dapat diturunkan.

One of Carbon Capture Storage (CCS) technology in pulverized coal fired power plant is oxy-fuel combustion technology. In oxy-fuel combustion technology, the coal is burned in a mixture of pure oxygen and recycled flue gas with high content of CO2 gas. Burning the coal in oxy-fuel combustion with O2 and CO2 environment will affect the combustion performance compare with air (O2/N2) environment. Based on previous researches indicated that oxygen concentration is required to be increased, so that the combustion behavior similar as in air environment. This study discusses the characteristics of coal ignition and combustion in oxy-fuel combustion applying TG-DTA (Thermo-Gravimetric Differential Thermal Analyzer) and Drop Tube Furnace (DTF). Three different Indonesian coal ranks of lignite, sub-bituminous and bituminous have been used as coal samples. Coal combustion test in DTF has been supplied with compressed air for air environment and mixing gas cylinder of 21%O2/CO2 for oxy-fuel environment. Experimental results indicated that the ignition time delay occurs in oxy-fuel combustion for all coal samples. Char combustion rate in oxy-fuel environment take longer time compared with in air environment. The different in physical gas properties influence on coal ignition and combustion characteristics.
The result of combustion characteristic in air and oxy-fuel environment applying the non-isothermal thermo gravimetric analysis shows the delayed in char burning compared with that in air environment at the same oxygen concentration. As oxygen concentration increases, DTA profiles shift to lower temperature zone, combustion rate increases and burnout time gets shorter. Finer coal size is also give higher DTA peak that meaning higher coal temperature in oxy-fuel environment. Volatile combustion rate is faster than coarser size in sub-bituminous and bituminous coal. Based on DTA combustion profile with the coal size of <44um, sub-bituminous coal has opportunity to use oxygen concentration below than 30% considering the peak of DTA curve so much higher than in air environment. Meanwhile, the bituminous coal needs at least 30%O2, because the peak on DTA curve is similar within air environment.
Simulation on two different existing coal fired power plants is presented to evaluate the different of energy consumption in oxy-fuel coal fire power plant. The 400MW coal fired power plant is designed with sub-bituminous coal type and 700 MW with bituminous coal type. Oxy-fuel combustion environment has been simulated on the steam cycle of each type coal fired power plant. Based on this simulation, the potency for decreasing efficiency loss in oxy-fuel coal fired power plant can be predicted. The efficiency loss at 400 MW coal fired power plant in oxy-fuel environment of 21%O2/79%CO2 and 30%O2/70%CO2 are 15.9%, and 19.0%, respectively. Furthermore, the efficiency loss at 700 MW coal fired power plant in oxy-fuel environment of 21%O2/79%CO2, and 30%O2/70%CO2 are 13.9%, and 17.8 %, respectively. Based on combustion test in TG-DTA, finer coal utilization with the coal size of <44 um in oxy-fuel power plant has opportunity for reducing oxygen concentration, so that the efficiency loss in oxy-fuel coal fired power plant due to higher consumption on ASU can be minimized.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
D2016
UI - Disertasi Membership  Universitas Indonesia Library
cover
Muksin Saleh
"Cadangan batubara Indonesia sebagian besar lebih dari 60 merupakan batubara dengan kalori rendah dan sedang yang dikenal dengan batubara peringkat rendah. Pada skenario KEN, pertumbuhan kebutuhan batubara rata-rata sebesar 5,1 dimana pada tahun 2025 kebutuhan batubara mencapai 37 juta Toe dan meningkat hingga mencapai 116 juta Toe di tahun 2050.Pemanasan mandiri self-heating dan pembakaran spontan spontaneous combustion batubara telah menjadi masalah serius di industri batubara. Kebakaran Batubara dan gambut dari Indonesia sering terjadi akibat kebakaran hutan di dekat singkapan.Kegiatan utama dari studi saat ini adalah melakukan eksperimen terhadap batubara peringkat rendah Indonesia dengan menggunakan metode uji yang berbeda TG-DTA, metode crossing point / CPT dan metode adiabatik . Selain itu, dilakukan pemodelan dengan piranti lunak COMSOL Multiphysics dan validasi dengan data eksperimen serta studi parametrik.Hasil pemodelan menunjukkan hasil yang berkesesuaian dengan data hasil ekperimen dengan penyimpangan temperatur sekitar 0,9 untuk CPT dan 1,5 untuk reaktor adiabatik.Dari studi parametrik di dapatkan bahwa porositas tumpukan dan konsentrasi oksigen memiliki efek yang cukup besar terhadap perilaku pembakaran spontan dan perlu mendapatkan perhatian dalam upaya untuk mencegah pembakaran spontan.Pemodelan dan Simulasi dapat digunakan sebagai alatbantu yang efektif untuk mencegah dan mencari solusi permasalah pembakaran spontan pada aplikasi di lapangan.

Indonesia's coal reserves mostly over 60 are low to moderate calorie coal known as low rank coal. In the KEN scenario, the average coal demand growth of 5.1 is where in 2025 the demand for coal reaches 37 million toe and increases to 116 million toe in 2050.Self heating and spontaneous combustion of coal have become a serious problem in the coal industry. Coal and peat fires from Indonesia often occur due to forest fires near the outcrop.The main activity of the current study is to conduct experiments on Indonesia's low rank coal using different test methods TG DTA, crossing point CPT method and adiabatic method. In addition, modeling with COMSOL Multiphysics software and validation with experimental data and parametric studies were performed.The modeling results show results that are compatible with experimental data with a temperature drift of about 0.9 for CPT and 1.5 for adiabatic reactors. From the parametric study it was found that the porosity of the pile and the oxygen concentration had a considerable effect on spontaneous combustion behavior and needed to get attention in an effort to prevent spontaneous combustion.Modeling and Simulation can be used as an effective tool to prevent and solve spontaneous combustion problems in field applications."
Depok: Fakultas Teknik Universitas Indonesia, 2017
D2315
UI - Disertasi Membership  Universitas Indonesia Library
cover
Muh. Syaiful Karim
"ABSTRAK
Kebakaran pada bangunan baik komersial maupun industri selama ini selalu mengkambing hitamkan listrik sebagai penyebab. Terlepas apakah benar kebakaran tersebut diakibatkan oleh listrik atau tidak namun hasil statistik baik international maupun nasional menyatakan bahwa kebakaran akibat listrik diatas 83 . Dari 83 kebakaran akibat listrik tersebut 90 dinyatakan bahwa kebakaran diakibatkan oleh hubungan pendek listrik electrical short circuit . Dari 90 kebakaran yang diakibatkan listrik 97 dimulai dari kabel ukuran kecil atau bisa dikatakan sebagai kabel yang digunakan sehari - hari dimana ukuran penampangnya antara 1 mm2 sampai dengan 2,5 mm2. Proses terjadinya kebakaran karena listrik dalam kondisi normal selalu dimulai dengan adanya perubahan atau kenaikan temperatur dalam inti kabel yang umumnya logam heat source dan adanya isolasi kabel pada kondisi tertentu berubah menjadi bahan bakar fuel dan oksigen yang tersedia. Pada kondisi normal komposisi oksigen di atmosfir sekitar 20,9 , nitrogen sekitar 78 dan sisanya diisi oleh komposisi gas lainnya sampai dengan 100 . Salah satu jalan untuk menghambat tumbuhnya api pada kabel listrik adalah dengan mengurangi konsentrasi oksigen sampai batas tertentu dimana pada konsentrasi ini api dapat dihambat bahkan dihindari pertumbuhannya, namun disisi lain penurunan konsentrasi oksigen ini harus masih dalam batas aman bagi manusia. Hasil penelitian ini dapat diaplikasikan pada panel listrik, ruang panel listrik, ruang kontrol, ruang IT dan ruang terbatas confined space dengan potensi penyalaan yang tinggi seperti adanya instalasi pengkabelan listrik. Untuk menguji pada konsentrasi berapa persen oksigen efektif dan bisa digunakan sebagai sarana pencegah kebakaran digunakan DSC Digital Scanning Calorimetre dan TGA Thermal Gravimetry Analysis . DSC akan menunjukkan berapa energi yang dibutuhkan untuk merusak isolasi dan mulai terdekomposisi, sedangkan TGA untuk melihat berapa banyak perubahan massa mass change yang terjadi.

ABSTRACT
Fire on buildings, both in commercial and industrial buildings always caused by electricity. Regardless whether the fire was caused by electrical system or not, but the results of both international and national statistics stated that the fire caused by electricity above 83 . From the 83 of the electrical fire caused, 90 stated that the fire caused by an electric fault. From the 90 of electrical fires, 97 trigerring and starting from small cables and wires or can be assumed the cable for daily common use with sizes among 1 mm2 to 2,5 mm2. The process of electrical fire on electrical cable on normal condition beginning from temperature changes or temperature increasing inside cable core that commonly made from metal heat source , their insulation becomes as fuel and existence of oxygen. In normal condition in atmospheric the composition of oxygen is 20,9 , nitrogen 78 and the rest was filled by another gas composition to 100 . One of the ways to inhibit the fire gowth on electrical cable is to reduce oxygen concentration to a certain where in this oxygen concentration fire growth can be avoid, however the decreasing of oxygen concentration should be safe for human life. This study can be applied on electrical distribution bard, electrical distribution room, control room, IT room and confined space with high potential igtion such as electrical cable installtion system. It as also possible to replacing exitiguishing system with characteristic could damage the environtment and electrical installation and its equipment protected. To investigate at what oxygen concentration is most effective used for fire prevention DSC Digital Scanning Calorimeter and TGA Thermal Calorimeter Gravimetry are use, DSC using to investigate energy needed to damage the cable insulation and begin to decomposition, while TGA to investigate how much are mass change during fire processing. "
2017
D2289
UI - Disertasi Membership  Universitas Indonesia Library
cover
Beline
"Tujuan utama penelitian ini difokuskan pada presurisasi tangga kebakaran dan pengendalian asap di ruang berukuran besar. Sebanyak 180 artikel akademik yang diterbitkan antara 1964 sampai 2022 ditinjau untuk merangkum strategi sistem presurisasi dan ekstraksi asap yang berkaitan dengan keselamatan berbasis kinerja di bangunan gedung. Dampak perbedaan tekanan dalam tangga darurat terhadap luar diteliti ada gedung perkantoran aktual 32 lantai. Pressurized-fan injeksi tunggal dipasang di atas ruang tangga. Sensor tekanan juga dipasang di lima lantai terpisah. Selanjutnya lima skenario pengujian dilakukan untuk mengukur perbedaan tekanan antar tangga dan koridor dengan beberapa pintu terbuka di berbagai lantai. Hasil pengujian menunjukan perbedaan tekanan sebesar 5-15 Pa diperoleh dari pengukuran lapangan dan perbedaan tekanan 10-20 Pa diperoleh melalui analisa numerik dengan kode FDS (Fire Dynamic Simulator). Analisa numerik juga menunjukkan distribusi tekanan di sepanjang tangga lebih merata dengan sistem presurisasi multi-injeksi. Dalam mempelajari manajemen asap di ruang berukuran besar, sebuah kompartemen berskala 1/10 berukuran 2,4m x 1,6m x 1,0m dan berlantai dua dengan sebuah lantai mezzanine dijadikan sebagai model eksperimen. Sumber asap berasal dari pembakaran sabut kelapa. Piranti lunak FDS juga digunakan untuk membandingkan hasil investigasi secara eksperimental dan analisis numerik. Analisa numerik FDS memperkirakan kenaikan obskurasi asap dan kenaikan temperatur lebih tinggi tinggi daripada yang diperoleh dari hasil pengujian. Meskipun banyak penelitian sebelumnya telah memberikan solusi untuk manajemen asap, kreativitas manusia dalam desain berkembang lebih cepat daripada regulasi atau pedoman sebelumnya sehingga diperlukan pendekatan berbasis kinerja dalam merancang sistem keselamatan kebakaran.

The primary aim of the research is focused on stairway pressurization systems and smoke control in large-volume spaces. A total of 180 academic publications published between 1964 and 2022 were included to summarize the practical applications of smoke control strategies based on pressurization or extraction systems, and potential research pertaining to performance-based safety schemes for smoke ventilation control in tall buildings. In an actual 32-story office building, the impact of a pressure differential over the stairs was studied. The single injection pressurized fan on the top of the stairwell and pressure sensors were on five separate floors to measure the pressure differential over time. Five scenarios are tested to observe the impact of differential pressure caused by an open door on various floors. The pressure difference between the stairwell and outside is 5 to 15 Pa gained in field measurements and 10 to 20 Pa in numerical studies. The numerical research also demonstrates that the pressure distribution along the stairs performed better for the multi-injection system. To explore smoke management in large volume spaces, another reduced-scale model of two levels with a mezzanine floor was developed using a 1/10 reduced-scale experimental compartment 2.4m x 1.6m x 1.0m. The smoke in the compartment was created by the combustion of coconut husks. Comparing experimental investigations to numerical analysis using FDS codes. The numerical calculations overestimate the rise in obscuration during the time of smoke accumulation. The increase in temperature simulated by FDS is also more than that observed by testing. While designing a smoke control system, it is necessary to use a performance-based approach."
Depok: Fakultas Teknik Universitas Indonesia, 2023
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Hari Yurismono
"Kebakaran stasiun pompa bahan bakar umum akibat nyala uap bahan bakar tahun 2020 terekam 38 kali di wilayah Indonesia. Konsentrasi uap bahan bakar yang flamabel pada area diantara batas bawah flamabilitas (Low Flammability Level, LFL) dan batas atas flamabilitas (Upper Flammability Level, UFL) merupakan faktor penyebab kebakaran. Tujuan penelitian: perancangan peralatan pengujian LFL bensin dengan metoda tabung menggunakan evaporasi internal untuk menghasilkan uap bensin. Alat ukur berupa tabung kaca vertikal d= 80 mm t= 300 mm, permukaan atas terbuka dan pemantik api listrik tegangan tinggi 10 J. Dua metoda pengukuran: arah propagasi ke atas (upward propagation) dan propagasi ke bawah (downward propagation) dilakukan terhadap enam sampel pada temperatur 28oC. Hasil pengujian: konsentrasi LFL propagasi ke atas untuk sampel RON_88 adalah 1,63%, RON_90-1; 1,77%, RON_90-2; 1,61%, RON_92; 1,65%, RON_95; 1,61% dan IO_100; 1,05%. Sedangkan arah propagasi ke bawah RON_88 adalah 2,49%, RON_90-1; 2,42%, RON_90-2; 2,4%, RON_92; 2,31%, RON_95; 2,12% dan IO_100; 1,58%.
Pengujian LFL Iso-octane metoda propagasi ke atas 1,15% (tabung d= 5,3 cm) dan 0,98% (tabung d= 2,5 cm) (Coward, 1952)
Angka oktan tidak banyak berpengaruh pada hasil pengujian LFL dengan metoda propagasi ke atas. Akan tetapi pada metoda propagasi ke bawah hasil LFL akan menurun dengan naiknya angka oktan.

Public fuel pump station fires due to fuel vapor flames in 2020 were recorded 38 times in Indonesian. The flammability of the fuel vapor concentration in the area between the lower flammability level (LFL) and the upper flammability level (UFL) is a cause of fire. The purpose of the study: the design of gasoline LFL testing equipment with the tube method using internal vaporization to produce gasoline vapor. The measuring instrument is a vertical glass tube d= 80 mm t= 300 mm, the top surface is open and a high voltage electric lighter 10 J. Two measurement methods: the direction of upward propagation and downward propagation were carried out on six sample at a temperature of 28oC. Test results: the concentration of LFL propagation upwards for samples RON_88 is 1.63%, RON_90-1; 1.77%, RON_90-2; 1.61%, RON_92; 1.65%, RON_95; 1.61% and IO_100; 1.05%. While the downward propagation direction of RON_88 is 2.49%, RON_90-1; 2.42%, RON_90-2; 2.4%, RON_92; 2.31%, RON_95; 2.12% and IO_100; 1.58%.
LFL Iso-octane testing with upward propagation method is 1.15% (tube d= 5.3 cm) and 0.98% (tube d= 2.5 cm) (Coward, 1952)
The octane number does not have much effect on the LFL test results with the upward propagation method. However, in the downward propagation method, the LFL results will decrease with increasing octane number.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Pither Palamba
"ABSTRAK
Kompleksitas masalah kebakaran di lahan gambut membatasi pemahaman kuantitatif perilaku penyebaran bara api ke dalam lapisan gambut dan peran parameter kunci seperti moisture content, densitas dan ketersediaan oksigen. Banyak penelitian tentang pembakaran membara pada lapisan gambut sudah dilakukan baik secara eksperimental, pemodelan maupun studi lapangan. Faktor-faktor yang mempengaruhi pembakaran membara pada lahan gambut antara lain moisture content, densitas, porositas, kecepatan angin dan lain-lain. Penelitian ini meliputi serangkaian pengujian untuk mendapatkan gambaran yang dapat menjawab fenomena pembakaran membara pada lapisan gambut.
Beberapa peneletian yang fokus pada pengaruh moisture content belum memperhitungkan adanya tahapan evaporasi dan pengeringan (yang mendahului pirolisis dan pembakaran) pada smoldering front sehingga parameter hasil pengujian ditentukan berdasarkan initial moisture content sebelum pembakaran berlangsung. Penelitian ini bertujuan untuk mempelajari pembakaran yang melibatkan tahapan-tahapan preheating, evaporation, drying, pyrolisis dan char oxidation pada lapisan gambut dengan moisture content yang meningkat seiring kedalaman sampel, yang menyerupai kondisi riil di lahan.
Penyiapan sampel dilakukan dengan mengeringkan sampel gambut yang masih basah (hasil sampling) pada temperature 105 ℃ masing-masing selama 4, 8, 12, 16, 20 dan 24 hours. Sampel hasil pengeringan tersebut dimasukkan ke dalam reaktor berukuran luas 10 cm × 10 cm dengan kedalaman 20 cm, pada lapisan masing-masing setebal 2.5 cm sehingga didapatkan sampel gambut dengan lapisan yang kering di permukaan (MC ~ 8.5 %) hingga lapisan yang masih basah (raw peat) di dasar reaktor. Pengukuran smoldering spread, evaporation rate, dan mass loss (yang termasuk evaporation rate) dilakukan dengan instrumen termokopel, soil moisture sensor dan weight balance secara real time.
Hasil pengujian menunjukkan bahwa pembakaran membara pada lapisan gambut dapat mencapai hingga lapisan yang sangat basah jika tersedia kalor yang cukup untuk mengeringkan dan membakarnya. Laju penguapan/pengeringan, perambatan bara dan kedalaman terbakar tergantung dari tebal lapisan kering yang mampu terbakar sebagai heat generation yang sebagian akan ditransfer untuk proses pemanasan, penguapan, pyrolysis, dan pembakaran. Dalam hal ini, pembakaran membara tidak merambat/menyebar pada lapisan gambut dengan moisture content (yang tinggi) tetapi smoldering front akan selalu berbatasan dengan lapisan yang kering. Pembakaran akan berhenti jika kalor pembakaran sama atau kurang dari jumlah yang diserap untuk penguapan dan ini merupakan titik kritis terjadinya extinction (pemadaman).

ABSTRACT
A considerable amount of experiments regarding smoldering combustion of peat had been conducted through various methods of experiment, modeling and fields study, with factors affecting the smoldering combustion of peatlands, including moisture content, density, porosity, wind speed, etc. However, it can be seen that some researches that focus on the influence of moisture content did not consider the evaporation and drying stages of the smoldering front, thus the parameters of the test results were determined based on initial moisture content prior to combustion. This experiment was conducted in order to study the smoldering combustion of the peat layer which resembles the real conditions in the field, which involves the stages of preheating, evaporation, drying, pyrolysis, and char oxidation.
Sample with a stratified moisture content that is increasing with the depth was prepared by drying the raw peat sample (sampling results) at 105 ℃ for 4, 8, 12, 16, 20 and 24 hours. The preparations samples then placed into the reactor of 10 cm x 10 cm with a depth of 20 cm, with each layer of peat with different moisture content at 2.5 cm thick, thus obtaining a layered peat configuration with the dry peat layer on the surface (MC ~ 8.5 %) and the wet peat layer (raw peat) at the bottom of the reactor. Measurements of smoldering spread rate, evaporation rate, and mass loss (including evaporation) rate were gathered through instruments of thermocouple, soil moisture sensor and weight balance, respectively, in real time.
The results from the experiment suggested that the evaporation rate, smoldering propagation, and depth of burn depended on the thickness of the burnable dry peat layer, or equivalent to the available amount of heat, which will be partially absorbed for heating and evaporation, pyrolysis and combustion processes. Therefore, smoldering combustion can not propagate on the moist peat layer, because it will always start with evaporation and drying process. The smoldering front will always be bordered by dry peat layer up to the point where the heat generated is equal or less than the amount needed for evaporation, which is the critical point of extinction"
2018
D2533
UI - Disertasi Membership  Universitas Indonesia Library
cover
Hafizha Mulyasih
"Kebakaran hutan dan lahan gambut di Indonesia menjadi kasus bencana yang berdampak besar bagi kesehatan masyarakat serta pelestarian lingkungan, khususnya sebagai wilayah tropis yang mengalami musim kemarau dan pengaruh El nino setiap tahunnya. Dalam rangkaian penelitian ini dikembangkan sistem skala laboratorium terintegrasi yang memungkinkan analisis komparatif dengan serangkaian pengumpulan data eksperimental yang komprehensif mencakup penyalaan, laju kehilangan massa, profil temperatur gambut, penurunan permukaan gambut, emisi gas, partikel yang dilepaskan, dan efek pemadaman, sehingga sistem terintegrasi ini menyediakan fasilitas untuk mempelajari hubungan antara parameter pembakaran yang dapat membantu dalam memahami pembakaran gambut yang membara. Rangka utama sistem terbuat dari rangka baja untuk mendukung penempatan reaktor, penempatan termokopel, sistem kamera termal, sistem akuisisi data, pemanas listrik, dan reservoir air untuk eksperimen upaya pemadaman. Kalorimeter dipasang di atas reaktor uji untuk mengumpulkan gas dan partikel yang dilepaskan selama proses uji untuk pengukuran dan analisis lebih lanjut. Berbagai eksperimen pengujian menggunakan sampel gambut tropis Indonesia dari tiga daerah yang berbeda, yaitu Papua, Kalimantan dan Sumatera. Kemudian sampel diuji dengan beberapa tes karakterisasi proksimat-ultimat untuk menentukan komponen gambut. Persiapan sampel seperti pengkondisian kandungan air dan homogenitas sampel dilakukan sebelum melakukan eksperimen pembakaran gambut. Hasil pengamatan uji pembakaran membara pada berbagai sampel gambut didapatkan rentang laju perambatan sebesar 1,27 cm/h sampai 1,57 cm/h, subsiden dan kehilangan massa sebesar ~60%, nilai faktor emisi (EF) sebesar 1228-1850 g/kg untuk CO2 dan 105,4-222,1 g/kg untuk CO. Selain itu, pemadaman dengan metode injeksi berbasis air dan berbasis busa dilakukan bertujuan untuk mempelajari perilaku pemadaman dengan melihat efektivitas waktu dan air yang dibutuhkan, sehingga memberikan solusi dalam upaya pemadaman kebakaran gambut yang bertahan didalam permukaan tanah dan sulit untuk dideteksi pemadam, terutama saat musim kemarau di lapangan. Diharapkan penelitian ini akan dapat berkontribusi pada pengelolaan lahan gambut yang lebih baik dalam pencegahan dan mitigasi kebakaran gambut.

Forest and peatland fires in Indonesia are cases of disasters that have a major impact on public health and environmental preservation, especially as a tropical region that experiences a dry season and the influence of El Nino every year. In this series of studies an integrated laboratory scale system was developed that allows comparative analysis with a comprehensive set of experimental data collection including ignition, mass loss rate, peat temperature profile, peat subsidence, gas emission, particulate matter, and suppression. This integrated system provides a facility to study the relationship between combustion parameters which can help in understanding the smoldering peat. The main frame of the system is made of stainless steel to support reactor placement, thermocouple placement, thermal camera system, data acquisition system, electric heater, and water reservoir for suppression experiments. The buoyancy calorimeter was installed above the reactor to collect gases and particles during the test process for further measurement and analysis. Various experiments used samples of Indonesian tropical peat from three different areas, namely Papua, Kalimantan and Sumatra. The results of the smoldering test on various peat samples showed a range of spread rate of 1.27 cm/h to 1.57 cm/h, subsidence and mass loss of ~60%, emission factor (EF) value of 1228 – 1850 g/kg for CO2 and 105.4 – 222.1 g/kg for CO. In addition, suppression using water-based and foam-based injection methods is carried out with the aim of studying the extinguishing behavior by looking at the effectiveness of the time and water required, thus providing a solution in efforts to extinguish peat fires that persist under the soil surface and are difficult to detect by firefighters, especially during the dry season. in the field. It is hoped that this research will be able to contribute to better peatland management in the prevention and mitigation of peat fires."
Depok: Fakultas Teknik Universitas Indonesia, 2022
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library