Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Arifina Febriasari
Abstrak :
Studi pemisahan gas CO2 dari CH4 penting dilakukan untuk meminimalisir efek negatif dari gas CO2 yang terkandung pada gas alam. Salah satu teknologi pemisahan yang banyak digunakan untuk pemisahan gas CO2 adalah teknologi membran. Tujuan dari penelitian ini adalah modifikasi membran CA menjadi fixed carrier membrane (FCM) dengan penambahan polietilen glikol (PEG) dan polietilen glikol metil eter akrilat (PEGMEA) sebagai zat aktif membran untuk meningkatkan permeabilitas gas CO2 pada membran. Produksi membran CA-PEGMEA dilakukan dengan proses mixing yang dilanjutkan dengan pemberian iradiasi sinar gamma secara simultan agar terjadi kopolimerisasi cangkok antara CA dan PEGMEA. Penambahan metilen bisakrilamida (MBA) pada studi awal dilakukan untuk mengetahui pengaruhnya terhadap sifat mekanik membran dan permeabilitas gas pada membran. Membran kemudian dikarakterisasi untuk mengetahui derajat kopolimerisasi (DC), perubahan struktur kimia (FTIR dan NMR), morfologi (SEM dan AFM), struktur kristal (XRD), serta kestabilan mekanik (UTM) dan termalnya (DSC). Metode Uji kinerja membran kemudian dilakukan terhadap gas murni CO2, gas murni CH4 dan gas campuran biner CO2 dan CH4. Uji karakterisasi DC menunjukkan bahwa nilai DC tertinggi terdapat pada membran CA-PEGMEA1(5), CA-PEGMEA3(15) dan CA-PEGMEA5(10). Hasil uji NMR menunjukkan adanya PEGMEA yang tercangkok pada polimer CA. Pada uji AFM ditunjukkan bahwa nilai kekasaran membran meningkat pada membran CA-PEGMEA dengan dosis iradiasi 5 kGy. Hasil analisis struktur kristal membuktikan kemungkinan bahwa PEG berinteraksi secara ikatan hidrogen dengan CA pada matriks polimer. Hasil uji kestabilan termal dan mekanik menunjukkan bahwa keberadaan MBA meningkatkan kestabilan termal dan mekanik, sedangkan pengaruh PEGMEA cenderung menurunkannya. Studi kinerja membran menunjukkan bahwa permeabilitas gas CO2 pada membran meningkat dengan adanya PEGMEA (dari 364 ke 679 barrer) yang tercangkok secara iradiasi pada membran, sedangkan pengaruh MBA justru menurunkan permeabilitas membran jika dibandingkan dengan membran CA-PEG tanpa MBA. Selektifitas ideal CO2/CH4 juga meningkat pada membran termodifikasi PEGMEA (dari 11 ke 48). Sementara itu hasil uji pemisahan gas binner CO2/CH4 menunjukkan bahwa fraksi mol CH4 pada retentate tertinggi didapatkan pada membran CA-PEGMEA1(5) dengan tekanan 40 Psi, yaitu 0,87. ......It is essential to study the separation of CO2 from CH4 to minimize the adverse effects of CO2 in natural gas. Membrane technology is one of the most widely used separation technologies for CO2 gas separation. This study aimed to modify the CA membrane to become a fixed carrier membrane (FCM) with the addition of polyethylene glycol (PEG) and polyethylene glycol methyl ether acrylate (PEGMEA) as active membrane agents to increase the permeability of CO2 gas in the membrane. Production of CA-PEGMEA membranes was done by a mixing process followed by simultaneous gamma-ray irradiation so that graft copolymerization occurs between CA and PEGMEA. The addition of methylene bisacrylamide (MBA) in the initial study was carried out to determine the effect on the membrane's mechanical properties and gas permeability. The membranes were then characterized to determine the degree of copolymerization (DC), changes in chemical structure (FTIR and NMR), morphology (SEM and AFM), crystal structure (XRD), and mechanical stability (UTM), and thermal (DSC). Methods The membrane performance test was then carried out on CO2 pure gas, CH4 pure gas, and a binary mixture of CO2 and CH4 gases. The DC characterization test showed that the highest DC values were found in CA-PEGMEA1(5), CA-PEGMEA3(15), and CA-PEGMEA5(10) membranes. The NMR test results confirmed the presence of PEGMEA grafted onto the CA polymer. The AFM test showed that the value of membrane roughness increased on the CA-PEGMEA membrane with an irradiation dose of 5 kGy. The results of the crystal structure analysis prove the possibility that PEG interacts by hydrogen bonding with CA in the polymer matrix. The results of the thermal and mechanical stability tests show that the presence of MBA increases the thermal and mechanical stability, the influence of PEGMEA tends to decrease it. Membrane performance studies showed that the CO2 gas permeability of the membrane increased in the presence of PEGMEA (from 364 to 679 barrer) grafted irradiated onto the membrane, while the effect of MBA decreased membrane permeability when compared to CA-PEG membranes without MBA. The ideal selectivity of CO2/CH4 also increased in PEGMEA-modified membranes (from 11 to 48). Meanwhile, the CO2/CH4 binary gas separation test results showed that the mole fraction of CH4 in the highest retentate was found in the CA-PEGMEA1(5) membrane with a pressure of 40 Psi, i.e., 0.87.
Depok: Fakultas Teknik Universitas Indonesia, 2023
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Irfan Purnawan
Abstrak :
Pencemaran air dan udara menjadi tantangan utama dalam pengelolaan lingkungan saat ini, karena membahayakan kehidupan manusia dan kehidupan lainnya. Limbah cair industri tahu, sebagai studi kasus penelitian ini, adalah salah satu limbah berbahaya karena banyak mengandung bahan yang membahayakan lingkungan dan kehidupan air serta menghasilkan bau yang menyengat. Sedangkan NOx (NO dan NO2) adalah salah satu pencemar udara yang membahayakan kehidupan dan dapat mengakibatkan terjadinya infeksi pernapasan. Penelitian ini bertujuan untuk membuat membran datar berbasis Polivinilidena Fluorida (PVDF) menggunakan aditif Polivinilpirolidona (PVP) dengan variasi komposisi 14,9/0,1; 14,85/0,15 dan 14,8/0,2 gram PVDF/gram PVP. Membran datar dimanfaatkan untuk mengolah limbah cair industri tahu dengan proses ultrafiltrasi (UF) yang sebelumnya diolah dengan proses koagulasi-flokulasi melalui jar tester menggunakan poli aluminium klorida (PAC) sebagai koagulan. Penelitian ini juga bertujuan untuk membuat membran serat berongga berbasis PVDF tanpa aditif untuk penyisihan gas NOx menggunakan berbagai senyawa absorben, yaitu larutan hidrogen peroksida dan asam nitrat (H2O2-HNO3), natrium klorit dan natrium hidroksida (NaClO2-NaOH), serta natrium klorat dan natrium hidroksida (NaClO3-NaOH). Untuk memahami dan membandingkan perubahan sifat fisik dan kimia yang terjadi, dilakukan karakterisasi membran diantaranya pemindaian mikroskop elektron (SEM), sudut kontak air, dan Fourier Transform Infrared Spectroscopy (FTIR). Berdasarkan karakterisasi membran datar berbasis PVDF untuk pengolahan limbah cair industri tahu, penambahan aditif PVP memperbesar ukuran dan distribusi pori serta membuat membran bersifat lebih hidrofilik sehingga meningkatkan permeabilitas serta nilai fluks. Hasil penelitian menunjukkan bahwa pengaruh PVP terhadap fluks yang paling besar yaitu pada membran PVDF/PVP 0,15 baik air maupun limbah cair industri tahu. Persentase rejeksi tertinggi untuk TSS, TDS dan kekeruhan diamati pada membran PVDF/PVP 0,1 secara berturut-turut besar 99,11%, 23,49% dan 96,67%. Pada penyisihan gas NOx didapatkan bahwa kekuatan oksidan mempengaruhi efisiensi penyisihan NOx. Larutan penyerap yang mengandung hidrogen peroksida memiliki efisiensi penyisihan tertinggi karena merupakan oksidan yang paling kuat, diikuti oleh natrium klorit dan natrium klorat dengan nilai secara berturut-turut sebesar 99,7%, 99,2% dan 99,3%. Ketiga senyawa absorben memberikan efisiensi penyisihan NOx yang tinggi (di atas 90%), yang berarti bahwa semua absorben yang digunakan dalam penelitian ini sangat potensial digunakan untuk mereduksi NOx melalui proses basah. Efisiensi penyisihan NOx pada laju aliran gas umpan yang sama meningkat seiring dengan peningkatan jumlah serat dan konsentrasi penyerap. Namun, efisiensi penghilangan NOx berkurang karena laju aliran gas umpan meningkat pada modul membran dan konsentrasi penyerap yang sama. ......Water and air pollution have become significant challenges in current environmental management, posing threats to human life and other organisms. Wastewater from the tofu industry, as the case study in this research, is one hazardous waste due to its high content of environmentally harmful substances, affecting aquatic life and emitting a pungent odor. Meanwhile, nitrogen oxides (NOx), including NO and NO2, are air pollutants that endanger life and can lead to respiratory infections. This research aims to develop a flat sheet membrane based on Polyvinylidene Fluoride (PVDF) using Polyvinylpyrrolidone (PVP) as an additive with various composition of 14.9/0.1; 14.85/0.15; and 14.8/0.2 grams of PVDF/gram of PVP. The flat sheet membrane is utilized for tofu wastewater from the tofu industry using the ultrafiltration (UF) process, preceded by coagulation-flocculation through jar testing using poly aluminum chloride (PAC) as a coagulant. Additionally, the study aims to create a hollow fiber membrane based on PVDF without additives for NOx gas removal using various absorbent compounds, namely hydrogen peroxide and nitric acid (H2O2-HNO3), sodium chlorite and sodium hydroxide (NaClO2-NaOH), and sodium chlorate and sodium hydroxide (NaClO3-NaOH). To understand and compare the physical and chemical property changes, membrane characterization was conducted, including scanning electron microscopy (SEM), water contact angle, and Fourier Transform Infrared Spectroscopy (FTIR). Based on the characterization of the PVDF-based flat sheet membrane for treating wastewater from the tofu industry, the addition of PVP enlarges pore size and distribution, making the membrane more hydrophilic, thereby increasing permeability and flux. The research results indicate that the most significant impact of PVP on flux is observed in the PVDF/PVP 0.15 membrane, both for water and wastewater from the tofu industry. The highest rejection percentages for TSS, TDS, and turbidity are observed in the PVDF/PVP 0.1 membrane, with values of 99.11%, 23.49%, and 96.67%, respectively. In NOx gas removal, it is found that the oxidizing strength influences the efficiency of NOx removal. The absorbent solution containing hydrogen peroxide shows the highest removal efficiency as it is the strongest oxidizer, followed by sodium chlorite and sodium chlorate with values of 99.7%, 99.2%, and 99.3%, respectively. All three absorbent compounds exhibit high NOx removal efficiency (above 90%), suggesting their great potential for NOx reduction through the wet process. The efficiency of NOx removal at the same feed gas flow rate increases with the rising number of fibers and absorbent concentration. However, the removal efficiency decreases as the feed gas flow rate increases for the same membrane module and absorbent concentration.
Jakarta: Fakultas Teknik Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Bayu Sari Adji
Abstrak :
Perubahan iklim dunia menuju pemanasan global menjadi isu kritikal saat ini yang sangat mendesak untuk mendapatkan penyelesaian. Pada industri minyak dan gas, unit pemisahan gas asam atau acid gas removal unit (AGRU) masih banyak melepaskan gas CO2 ke atmosfer yang akan merusak lingkungan. Proses teknologi hidrogenasi CO2 menjadi metanol menggunakan katalis tembaga dipandang dapat menjadi salah satu solusi mengolah buangan CO2 unit AGRU. Reaktor sebagai alat proses yang sangat penting tempat reaksi kimia berlangsung harus dapat didesain sebaik mungkin agar hasil produksi dapat mencapai spesifikasi yang diinginkan. Studi ini bertujuan untuk mendesain reaktor proses hidrogenasi CO2 menjadi metanol dengan metode simulasi menggunakan COMSOL multiphysics dan UniSim. Konversi CO2 menjadi metanol relatif kecil dan dibatasi oleh konversi kesetimbangan serta panas reaksi yang harus dikendalikan karena reaksi eksotermis. Oleh karena itu rancangan reaktor diupayakan dapat menaikkan konversi dan mengendalikan panas yang terbentuk dengan cara penerapan reaktor unggun diam bertahap dengan pendinginan dan pemisahan metanol-air antar tahap unggun reaktor. Validasi dengan data literatur berupa hasil eksperimen An Xin et.al. yang menggunakan reaktor unggun diam pada tekanan 50 Bar pada berbagai temperatur operasi yaitu 210 °C, 230 °C, 250 °C dan 270 °C. Hasil eksperimen menunjukan adanya kesesuaian hasil simulasi dengan data eksperimen tersebut untuk konversi CO2 dan yield metanol. Validasi dengan menggunakan data pabrik metanol skala komersial pada literatur juga menunjukkan hasil yang cukup memuaskan dengan deviasi di bawah 9.99%. Konversi tertinggi CO2 untuk produksi metanol hasil simulasi didapat pada temperatur 232 °C. Hasil simulasi menunjukkan bahwa sintesis metanol kurang efisien pada temperatur yang lebih tinggi dari 232°C dikarenakan sifat reaksi yang eksotermis. Dimensi reaktor yang dirancang dalam penelitian ini dengan diameter 1.5 meter, dengan 5 tahap unggun dan tinggi tiap unggun ( bed ) pada rentang 0,5 - 1 meter, dapat menghasilkan metanol sebesar 5698 kg/jam (136.75 ton/hari) dari hasil olahan aliran CO2 gas buangan AGRU sehingga hasil konversi total CO2 menjadi metanol meningkat sebesar 71.5% dibandingkan dengan reaktor satu tahap. 
A world climate change towards global warming has been a critical issues which currently need a sustainable solution. In the oil and gas industry, acid gas removal unit releases a significant amount of   into the atmosphere which critical to the environment. The process technology of CO2 hydrogenation into methanol using copper catalyst has been considered as a potential solution to treat the released CO2. Reactor is the key process equipment where the chemical reaction is performed thus must be designed properly to ensure the product will meet the required specification. This study aims to design a reactor for CO2 hydrogenation into methanol utilizing COMSOL multiphysics and UniSim process simulation. CO2 conversion to methanol has a relatively small value as limited by its equilibrium and was inhibited by the exothermic heat reaction released that shall be well managed. Therefore a novel reactor design is developed to increase the overall conversion of CO2 into methanol as well as to control the released heat with implementation of an adiabatic multistage fixed bed reactor with inter-stage cooling and methanol-water removal. Validation of the model with experiment from AnXin et.al was performed at pressure of 50 Bar and varied temperature of  210 °C, 230 °C, 250 °C and 270 °C to ensure simulation accuracy. The simulation result shows a good agreement with the reference data in term of the CO2 conversion as well as methanol yield for both laboratory scale and industrial benchmark data. The highest conversion was achieved at the temperature of 232 oC at 50 Bar and it was found that that methanol synthesis was not efficient to be conducted at a higher temperature than 232oC due to its exothemic nature of the reaction. A fixed bed reactor with the dimension of 1.5 meter diameter and 5 stages of multibed configuration can process a 5 MMSCFD feed gas from AGRU to produce methanol at rate of 5698 kg/h (136.75 ton/day) which is 5 times higer than can be produced from a single stage fixed bed reactor.
Depok: Fakultas Teknik Universitas Indonesia, 2020
D2720
UI - Disertasi Membership  Universitas Indonesia Library
cover
Mirza Mahendra
Abstrak :
Penelitian ini bertujuan untuk mendapatkan sistem rantai suplai pemanfaatan BBG dan efektifitas pembakaran BBG pada mesin kendaraan serta memperoleh komposisi BBG yang aman pada sistem pembakaran kendaraan. Tahapan yang dilakukan meliputi pemodelan sistem rantai suplai, pengujian kinerja pembakaran dan penentuan komposisi CNG dan LGV untuk mesin kendaraan. Metode kinetika oksidasi dan pembakaran merupakan metode yang digunakan untuk menentukan komposisi CNG dan LGV dengan membanding hasil ignition delay time yang didapat. Hasil penelitian ini menunjukan pengembangan infrastruktur bahan bakar gas di pulau Jawa membutuhkan 8 CNG Mother Station, 56 CNG Daughter Station dan 11 SPBG LGV. Berdasarkan data harga minyak bumi pada tahun 2012, harga keekonomian CNG Rp.3.344/LSP untuk skenario pembiayaan BaU dan Rp. 2.069/LSP untuk skenario pembiayaan pemerintah. Sedangkan harga keekonomian LGV Rp. 8.392/LSP untuk skenario BaU dan Rp. 8.035/LSP untuk skenario pembiayaan pemerintah. CNG dengan atom karbon lebih sedikit memiliki pembakaran lebih sempurna. LGV yang memiliki komposisi propana terbesar menghasilkan kinerja terbaik. Hasil simulasi komposisi CNG adalah metana minimal 80%, etana maksimal 10% serta propana dan hidrokarbon berat lainnya maksimal 15%. Sedangkan LGV dengan komposisi propana minimal 30 % dan butana maksimal 70%.
This study aims to obtain supply chain system of CNG and LGV utilization and effectiveness of these fuels combustion in vehicle engine as well as to obtain the best composition of CNG and LGV for vehicle ignition system. Steps being taken include the modeling of supply chain systems, combustion performance testing and determination of the composition of CNG and LGV for vehicle engines. Oxidation kinetics and combustion method is a used method to determine the composition of CNG and LGV by comparing the results of ignition delay time. These results indicate that fuel gas infrastructure development in Java requires 8 CNG Mother Stations, 56 CNG Daughter Stations and 11 SPBGs LGV. Based on data from the price of oil in 2012, the economic price of CNG is Rp.3.344/LSP and Rp. 2069/LSP for financing scenarios BAU and for government financing scenarios, respectively. Meanwhile, the economic price of LGV is Rp. 8392/LSP and Rp. 8035/LSP for BAU scenario and for government financing scenarios, respectively. CNG with fewer carbon atoms shows more complete combustion, and LGV which has the largest propane composition produces the best performance. Simulation results show that the best CNG composition is at least contains of 80% methane, maximum 10% of ethane and propane and up to 15% of other heavy hydrocarbons. Meanwhile, the best LGV composition must contain at least 30% of propane and maximum 70% of butane.
Depok: Universitas Indonesia, 2015
D2009
UI - Disertasi Membership  Universitas Indonesia Library