Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Tutta Aurum Nisauf
"ABSTRAK
Penelitian ini diajukan dalam rangka melanjutkan penelitian sebelumnya oleh Wibowo (2015) tentang evaluasi Gamma Index (GI) untuk material homogen dan inhomogen dengan teknik IMRT. Penelitian ini dilakukan dengan menggunakan film gafchromic EBT3 sebagai detektornya. Kemudian, registrasi antara image dosis planar TPS dengan image hasil pengukuran menggunakan film dilakukan. Perencanaan radioterapi telah disiapkan sebanyak 5 pasien menggunakan modalitas FBCT, TPS Philips Pinnacle3, energi foton 6 MV, teknik IMRT 50 segment, dan CGR 0.2 cm. Evaluasi GI dilakukan dengan DD 2%, DTA 2 mm dan DD 5% DTA 3%, SAD 100 cm, dan kedalaman pengukuran pada phantom yaitu 5 cm dan 10 cm. Hasil penelitian menunjukkan GI pada material homogen lebih tinggi daripada material inhomogen. Selisih rata-rata hasil pengukuran GI terhadap penelitian sebelumnya untuk material homogen berkisar 1.98% (kedalaman 5 cm) dan 2.05% (kedalaman 10 cm) dan untuk material inhomogen sebesar 2.98% (kedalaman ekuivalen 5 cm) dan 4.59% (kedalaman ekuivalen 10 cm).

ABSTRACT
This study was the extended work which has been done by Wibowo (2015) about Gamma Index (GI) evaluation for homogeneous and inhomogeneous material with IMRT techniques. This study was done to evaluate the gamma index for registering between the planar of dose planning and the measurement from EBT film. Treatment plan was simulated for 5 patients using FBCT modality, Philips Pinnacle3 planning system, 6 MV photon energy, 50 segments IMRT technique, and calculation grid resolution (CGR) of 0.2 cm. GI evaluation was done with criteria of dose difference (DD) of 2%, dose to agreement (DTA) of 2 mm and DD of 5% DTA of 3 mm, SAD 100 cm, depth of 5 cm and 10 cm of the phantom. The result shows that GI for homogeneous material is greater than for inhomogeneous material with discrepancy to previous work is about 1,98% for homogeneous material (depth 5 cm) and 2.05% (depth 10 cm) while it was found of 2,98% for inhomogeneous material (equivalent depth 5 cm) and 4.59% (equivalent depth 10 cm)."
2016
S63793
UI - Skripsi Membership  Universitas Indonesia Library
cover
Suharsono
"Pada Radioterapi eksterna untuk menjamin ketepatan pemberian dosis terhadap target radiasi perlu dilakukan verifikasi sebelum dilakukan penyinaran. Verifikasi dosis yang sebenarnya diterima oleh target radiasi hanya dapat dilakukan dengan metode in vivo.Verifikasi metode in vivo ini dilakukan dengan meletakan dosimeter dioda langsung diatas permukaan virtual water phantom, sedangkan sebagai dosimeter pengontrol digunakan dosimeter ionisation chamber yang diletakan pada tiap-tiap kedalaman target pengukuran. Tujuan dilakukanya verifikasi dosis in vivo adalah untuk mengetahui kesesuaian antara dosis yang sebenarnya diterima target radiasi dengan dosis yang direncanakan, sehingga target radiasi tidak mengalami kelebihan dosis ataupun kekurangan dosis. Pada tahap pertama, verifikasi dilakukan pada lapangan persegi tanpa blok dengan variasi luas lapangan, energi penyinaran, jarak dari sumber ke target, serta kedalaman target radiasi. Perhitungan Monitor Unit dilakukan secara manual maupun dengan menggunakan TPS. Pada tahap kedua, dilakukan verifikasi pada lapangan dengan blok Multi Leaf Collimator dengan variasi energi penyinaran. Dari 60 lapangan persegi yang telah diverifikasi, dosimeter dioda mencatat perbedaan dosis terukur terhadap dosis yang direncanakan dalam rentang ± 2,5%, sedangkan dari verifikasi terhadap 6 lapangan dengan blok MLC dihasilkan perbedaan dosis terukur terhadap dosis yang diharapkan dalam rentang ± 3,5%. Hasil ini masih dalam rentang toleransi yang diperbolehkan sehingga penghitungan Monitor Unit untuk setiap lapangan sudah benar.

To obtain pricise dose delivery on target radiation, dose verification is performed before starting external beam radiation therapy. The actual dose received by radiation target can only be evaluated using in vivo methode. In this research in vivo methode is done by putting diode dosimeter on virtual water phantom, and as control dosimeter, ionisation chamber, is put on each depth variation. The aim of external beam dose verification is to verify wether the actual dose received by radiation target has met with the planned dose, so that radiation didnot experience under dose or over dose. In the first phase dose verification is done using open beam with variation of field sizes, beam energy, SSD ,and depth. Monitor unit calculation is done manually, and using 2D PRICISE Treatment Planning System. In the second phase dose verification is done using block field with beam energy variation. Result, from 6o open beam fields there are ± 2,5% dose difference between actual and planned dose, and from verification of 6 fields using MLC block there are ± 3,5% dose difference between actual and planned dose. These results are still on the range of tolerance. These results showed that monitor unit calculation either manually or using TPS are correct."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S42707
UI - Skripsi Open  Universitas Indonesia Library
cover
Dhaniela Stenyfia
"Verifikasi dosis TPS (Treatment Planning System) mutlak diperlukan sebagai suatu pelaksanaan progam jaminan kualitas Radioterapi. Sebagian besar jaminan kualitas dosis dilakukan didalam area radiasi, sedangkan pemantauan dosis organ kritis berada diluar area radiasi. Berdasarkan hal tersebut dilakukan verifikasi TPS untuk dosis organ kritis (ginjal, caput femur, ovarium, dan vagina) menggunakan linac dan TPS milik RSPP. Simulasi pengukuran dosis dilakukan dengan memberikan perlakuan radioterapi area pelvis box field pada rando phantom (SAD 100 cm, foton 10 MV) serta menggunakan TLD sebagai dosimeter. Dosis simulasi akan dijadikan acuan untuk memverifikasi dosis TPS. Berdasarkan verifikasi tersebut diperoleh hasil bahwa kalkulasi dosis TPS sesuai untuk organ kritis caput femur, ovarium, dan vagina, dengan persen error kurang dari 5%. Sedangkan untuk organ kritis ginjal, kalkulasi TPS tidak sesuai dikarenakan persen error yang mencapai 17% untuk lapangan B dan 90% untuk lapangan A yang berukuran lebih kecil dari lapangan B. Dalam penelitian ini juga dilakukan pengambilan data penumbra untuk mengetahui batas kemampuan kalkulasi TPS yang dimiliki.

Verification of TPS`s (Treatment Planning System) dose calculation is necessary as a program of quality assurance (QA) for radiotherapy. Most proccess of QA are infield, while evaluation for organ-at-risk (OAR) dose is outfield. Based on that, verification of TPS`s dose had been done for OAR (kidney, femoral head, ovary, and vagina) using linac and TPS at RSPP. Simulation for dose measurement was done by giving pelvic area radiotherapy (box field, SAD 100 cm, photon 10 MV) to rando phantom and using TLD as a dosimetry. Simulation`s dose would be used as the reference to verify TPS`s dose. Based on that, the result show that dose calculation of TPS was appropriate for femoral head, ovary, and vagina, that`s because percent error was less than 5%. Whereas for kidney, the calculation wasn`t appropriate because percent error reached 17% for field B and 90% for field A that has size smaller than field B. Penumbra`s data also had been taken in this research, to find out the limit of TPS`s calculation."
Depok: Universitas Indonesia, 2014
S54777
UI - Skripsi Membership  Universitas Indonesia Library
cover
Priska Andini Putri
"Cone Beam CT adalah perangkat citra pemandu yang diintegrasikan pada perangkat LINAC radioterapi. Perangkat tersebut banyak digunakan untuk verikasi posisi pasien dalam tindakan radioterapi. Dalam penelitian ini telah dilakukan untuk estimasi dosis pada daerah kepala, dada, dan pelvis dan untuk evaluasi citra dengan menggunakan perlakuan Cone Beam CT satu putaran penuh. Fantom rando digunakan pada penelitian ini untuk mensimulasikan keadaan yang mendekati sebenarnya dengan kondisi klinis 100 kVp 145 mAs, 110 kVp 262 mAs, dan 125 kVp 680 mAs untuk berturut-turut prosedur perlakuan CBCT kepala, dada, dan pelvis. Dosimeter yang digunakan dalam penelitian ini adalah TLD yang dikalibrasi di PTKMR BATAN dengan kondisi yang sesuai dengan kondisi klinisnya. Fantom Catphan 504 digunakan untuk mengevaluasi citra CBCT dengan menggunakan kondisi klinis protokol pelvis, yaitu dengan energi 125 kV. Hasil estimasi dosis yang diperoleh dari penelitian ini adalah 4.018±0.334 mGy, 4.210±0.428 mGy, dan 12.547±3.046 mGy berturut-turut pada kepala, dada, dan pelvis. Hasil citra dari penelitian ini dievaluasi menggunakan Image J yang menghasilkan nilai densitas material yang ada pada fantom Catphan mendekati nilai acuannya, didapatkan ketebalan slice sebesar 2.153 mm, resolusi uji citranya sebesar 5 lp/cm, dan uji uniformitas pada pusat ROI adalah 34.610±40.999 HU.

Cone Beam CT is an image guided device which is integrated in radiotherapy LINAC. The device often used to verify the positions of patient in radiotherapy treatment. Dose estimation for three different clinically scan sites (head, thorax, and pelvis) and image evaluation were performed during the research using full circular treatment by Cone Beam CT. Rando phantom was also used in this research to simulate the real condition for clinical scans (100 kVp 145 mAs for head, 110 kVp 262 mAs for thorax, and 125 kVp 680 mAs for pelvis). TLDs were used and calibrated at PTKMR BATAN with the real condition as clinical condition to mesure the dose. For image evaluation were performed using pelvis clinical scan (125 kV) and using Catphan 504 phantom. Results of dose estimation are 4.018±0.334 mGy for head, 4.210±0.428 mGy for thorax, and 12.547±3.046 mGy for pelvis. Results of image evaluation which was using Image J generated the approximate recommendation value of material density on the Catphan Phantom; slice thickness is 2.153 mm, high resolution is 7 lp/cm, and uniformity in center ROI is 34.610±40.999 HU.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S54790
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adi Teguh Purnomo
"Evaluasi dosis radiasi yang diterima pasien dapat dilakukan menggunakan metode dosimetri in-vivo dengan melakukan pengukuran dosis masukan yang didefinisikan sebagai dosis serap pada kedalaman maksimum. Dosimeter in-vivo yang digunakan adalah TLD-100 rod, Film Gafchromic EBT2, dan dioda EDP-153G yang dikalibrasi berdasarkan protokol IAEA dan ESTRO. Hasil faktor kalibrasidetektor dioda sebesar 0.0988 cGy/ADU dan 0.0966 cGy/ADU untuk protokol IAEA dan ESTRO sedangkan Faktor kalibrasidetektor TLD memiliki rata-rata perbedaan sebesar 3.69 ± 0.04 %. Selain itu, faktor koreksi dioda EDP-153G terhadap variasi SSD, luas lapangan, dan linieritas dosis berada dalam rentang nilai 0.99-1.01 untuk protokol IAEA dan ESTRO sedangkan faktor koreksi terhadap sudut sinar datang berada dalam rentang nilai 1.028 - 1.037 dan 1.027-1.057 untuk protokol IAEA dan ESTRO. Pengukuran dosimetri in-vivo dititikberatkan pada kasus kanker paru dan prostat dengan meletakkan dosimeter in-vivo diatas permukaan kulit untuk beberapa titik pengukuran. Dosis masukan yang diperoleh bervariasi untuk setiap titik pengukuran akibat adanya perbedaan fluence. Evaluasi dosis pada organ target juga ditentukan dengan meletakkan film Gafchromic EBT2 pada slab fantom Rando Alderson. Persentase error yang diperoleh terhadap dosis yang direncanakan yakni sebesar 0.03% pada film 1 dan 2.5% pada film 2 untuk kanker paru sedangkan untuk kanker prostat sebesar 5.88% untuk film 1 dan 5.50% untuk film 2.

Evaluation of the radiation dose received by the patient could be performed with the in-vivo dosimetry by mean of the entrance dose measurement which defined as the absorbed dose to the maximum depth. TLD-100 rod, Gafchromic EBT2 film, and diode EDP-153G were used as in-vivo dosimeters and calibrated by the IAEA and ESTRO protocol. The results of calibration factor for diode EDP-153G was 0.0988 cGy/ADU and 0.0966 cGy/ADU for the IAEA and ESTRO, respectively while the differences of mean percentage was 3.69 ± 0.04 % relative to IAEA protocol for TLD. In addition, a correction factor for diode EDP-15­3Gto the variation of SSD, field size, and dose linearity were within the range of0.99-1.01 for the IAEA and ESTRO while the angular correction factor was at 1.028-1.037 and 1.027-1.057 for the IAEA and ESTRO protocol, respectively. The in-vivo dosimetry measurement was concerned in lung and prostate carcinoma by putting the in-vivo dosimeters on skin surface at some points of interest. The entrance dose measurement was varied for each point of measurement due to difference of fluence. The target dose evaluation was also determined by placing the Gafchromic EBT2 Film into slab of Rando Alderson phantom. The percentage error to the planned dose was 0.03% at the film 1 and 2.5%at the film 2 for lung carcinoma while for prostate carcinoma was 5.88% for the film 1 and 5.50% for film 2.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S54915
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rofikoh
"ABSTRAK
Adapun tujuan utama dilakukannya penelitian ini yaitu mengetahui profil dosis lapangan kecil pada medium tulang belakang dengan teknik penyinaran SAD. Selain itu, kami mengevaluasi dan membandingkan dosis perencanaan pada teknik SBRT dan konvensional terhadap hasil pengukuran yang dilakukan menggunakan dosimeter Exradin A16 dan Gafchromic EBT3. Evaluasi perencanaan radioterapi dilakukan dengan menghitung indeks konformitas dan indeks homogenitas untuk daerah toraks dan lumbal. Hasilnya menunjukkan bahwa film EBT3 merupakan dosimeter dengan akurasi dan presisi yang paling tinggi dengan rata-rata standar deviasi sebesar ±1.7 dan diskrepansi maksimum sebesar 2.6%, secara berturut-turut. Deviasi FWHM untuk lapangan 0.8 x 0.8 cm2 sebesar 16.3%, sedangkan untuk lapangan 2.4 x 2.4 cm2 sebesar -3.0%. Perbandingan lebar penumbra terhadap luas lapangan kolimasi untuk lapangan 0.8 x 0.8 cm2 sebesar 37.1%, sedangkan untuk lapangan 2.4 x 2.4 cm2 sebesar 12.4%. Evaluasi indeks konformitas dan indeks homogenitas pada perencanaan menunjukkan bahwa perencanaan pada daerah toraks memiliki hasil yang lebih baik dibandingkan lumbal.

ABSTRACT
The main objective of this study was to know dose profile of small field radiotherapy in the spine case with SAD techniques. In addition, we evaluated and compared the dose planning of SBRT and conventional techniques to measurements with Exradin A16 and Gafchromic EBT3 film dosimeters. Evaluation of radiotherapy planning has been used using both conformity and homogeneity index for thorax and lumbal regions. The results showed that film EBT3 is highest precision and accuracy with average of standard deviation of ±1.7 and maximum discrepancy of 2.6%, respectively. In addition, the deviation of Full Wave Half Maximum (FWHM) in small field size of 0.8 x 0.8 cm2 is 16.3%, while it was found around 3 % for the field size of 2.4 x 2.4 cm2. The comparison between penumbra width and the collimation was around of 37.1% for the field size of 0.8 x 0.8 cm2 is 37.1%, while it was found of 12.4% for the field size of 2.4 x 2.4 cm2. Moreover, the HI and CI evaluation of the planning shows that planning of thorax indicating better results than lumbal regions"
2016
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library