Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Ian Ajrin Rohman
"Dimetil eter (DME) merupakan senyawa yang potensial untuk dikembangkan menjadi bahan bakar berkelanjutan. Unit purifikasi metanol-air merupakan salah satu unit pada sintesis DME yang penting untuk dikendalikan agar metanol dapat dialirkan kembali ke proses sehingga efisiensi pabrik secara keseluruhan dapat meningkat. Penggunaan multivariable model predictive control (MMPC) pada proses ini dapat meningkatkan kinerja pengendalian dan menurunkan biaya modal dalam pembelian pengendali. Hal ini disebabkan karena MMPC dapat mengendalikan beberapa variabel dengan satu pengendali. Penyetelan MMPC yang dilakukan dengan Matlab melalui seleksi turnamen pada 888 kombinasi data tiap perubahan CV menunjukkan bahwa sampling time MMPC memiliki pengaruh yang sangat besar terhadap kinerja pengendalian. Nilai sampling time yang terlalu kecil akan menghasilkan sensitivitas yang terlalu besar dan menyebabkan perubahan parameter lainnya, yaitu prediction horizon dan control horizon, menjadi sulit dipahami karena polanya cukup acak. Metode penyetelan MMPC yang diusulkan berhasil mendapatkan nilai-nilai IAE dan ISE yang optimum dan secara umum dapat memperbaiki kekurangan dari penyetelan penelitian sebelumnya. Dari penelitian ini diperoleh pengendalian yang cukup optimum pada T=0,5; P=20; dan M=2.

Dimethyl ether (DME) is a compound that has the potential to be developed into a sustainable fuel. The methanol-water purification unit is important unit to be controlled in DME synthesis, to make sure that methanol can be flowed back into the process then increase the overall efficiency of the plant. The importance of using multivariable model predictive control (MMPC) in this process is to improve process control performance and reduce capital costs in purchasing controllers. It is because MMPC can control several variables with one controller. MMPC tuning performed with Matlab through tournament selection on 888 data combinations for each CV change shows that the MMPC sampling time has a very large influence on control performance. A sampling time value that is too small will result in a very high sensitivity and causes changes in other parameters, namely the prediction horizon and control horizon, to be difficult to understand because the pattern is quite random. The proposed MMPC tuning method has succeeded in obtaining optimum IAE and ISE values ​​and in general can correct the shortcomings of previous research settings. The best control was obtained at T=0.5; P=20; and M=2.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anwar Ismail
"

Gas alam merupakan sumber energi ketiga yang paling banyak digunakan di Indonesia, setelah minyak bumi dan batubara. Agar lebih mudah ditranportasikan, gas alam diubah menjadi LNG kemudian diubah kembali melalui proses regasifikasi LNG. Diperlukan sistem pengendali agar proses regasifikasi LNG dapat berjalan lancar. Multivariabel model predictive control (MMPC) merupakan pengendali tingkat lanjut yang dapat digunakan pada sistem regasifikasi LNG. Terdapat tiga parameter pada MMPC, yaitu sampling time (Ts), prediction horizon (P), dan control horizon (M).  Pada penelitian ini, dilakukan penyetelan MMPC untuk mendapatkan parameter MMPC dengan menggunakan metode minimalisasi nilai integral of square error (ISE). Kinerja pengendalian MMPC dengan tuning minimalisasi nilai ISE kemudian dibandingkan dengan pengendalian MMPC hasil fine-tuning (trial and error) dan didapatkan bahwa kinerja MMPC dengan tuning minimalisasi nilai ISE lebih baik. Selain itu, proses tuning dengan minimalisasi nilai ISE lebih mudah dilakukan dibanding fine-tuning (trial and error) karena dapat berjalan secara otomatis.

 


Natural gas is the third most widely used energy source in Indonesia, after oil and coal. To make it easier to transport, natural gas is converted into LNG and then converted back through the LNG regasification process. A control system is needed so that the LNG regasification process can overcome the disturbances that arise. Multivariable model predictive control (MMPC) is an advanced controller that can be used in LNG regasification systems. There are three parameters in MMPC, namely sampling time (Ts), prediction horizon (P), and control horizon (M). In this study, the MMPC was tuned to obtain the MMPC parameters by using the integral of square error (ISE) minimization method. The performance of the MMPC control by tuning the ISE minimization value was then compared with the MMPC control with the results of fine-tuning (trial and error) and it was found that the performance of the MMPC by tuning the minimization of the ISE value was better. In addition, the tuning process by minimization of the ISE value is easier to do than fine-tuning (trial and error) because it can run automatically.

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Adjisetya
"Hidrogen merupakan salah satu gas yang memiliki banyak kegunaan. Salah satunya pada industri kimia. Pabrik yang memiliki banyak gangguan akan berdampak pada efektivitas dan kestabilan operasi pabrik. Selain itu, pabrik yang memiliki banyak gangguan unit juga akan berpengaruh pada lingkungan sekitar. Unit kompresor dan steam reformer merupakan unit – unit yang penting dalam pabrik biohidrogen dari biomassa. Kompresor berfungsi untuk mencapai tekanan tinggi pada kondisi operasi selanjutnya dan steam reformer merupakan proses utama dari pabrik ini yang berfungsi untuk menghasilkan gas hidrogen.  Multivariable model predictive control (MMPC) merupakan suatu pengendali tingkat lanjut. Identifikasi model empirik berdasarkan berdasarkan first order plus dead time (FOPDT) untuk pengaruh gangguan ini dilakukan melalui metode process reaction curve (PRC). Dalam melakukan pengujian, model empirik yang digunakan pada MMPC yaitu model FOPDT yang diperoleh dengan metode 2 (Smith), serta penggabungan dengan model FOPDT MPC yang telah diperoleh pada penelitian sebelumnya yang telah dilakukan oleh oleh Wahid dan Taqwallah (2018). Untuk memperoleh kinerja pengendalian proses yang optimal dilakukan proses tuning atau penyetelan dengan menggunakan metode Shridhar dan Cooper, serta fine tuning untuk dibandingkan dengan kinerja pengendalian model predictive control (MPC) oleh Wahid dan Taqwallah (2018). MMPC fine tuning dengan model FOPDT yang diperoleh dengan metode 2 (Smith) tanpa penggabungan dengan model MPC memberikan hasil yang terbaik karena dapat menstabilkan aliran lebih cepat sesuai dengan setpoint. Parameter nilai T, P, dan M pada MMPC yang diperoleh yaitu 1, 341, dan 121 pada unit kompresor, serta 1, 45, dan 21 pada unit steam reformer. Peningkatan kinerja MMPC ini yaitu pada unit kompresor 1 yaitu 85,84%; unit kompresor 2 61,39%; unit kompresor 3 yaitu 94,57%; dan unit kompresor 4 yaitu 73,35%, serta pada unit steam reformer peningkatan kinerja MMPC fine tuning yaitu 63,34% pada heater dan 80,16% pada combustor.

Hydrogen is one of many gases that has many uses, one of which is in the chemical industry. A factory that has many units creates a lot of disturbances that affect on the effectiveness and stability of the plant's operation, and it will also affect the surrounding environment. Compressor unit and steam reformer are two of the important units in biohydrogen plant from biomass. The compressor works to achieve high pressure in the next operation and Steam Reformer is the main process of this plant which functions to produce H2 gas. Multivariable Model Predictive Control (MMPC) is an advanced controller.  The identification of the empirical model based on first order plus dead time (FOPDT) for the effect of this disturbance was carried out using the process reaction curve (PRC) method. The empirical model that used for the MMPC controller is the FOPDT model obtained by method 2 (Smith), as well as combining it with the MPC FOPDT model which has been acquired in previous research conducted by Wahid and Taqwallah (2018). To obtain optimal process control, a tuning process is carried out using the Shridhar and Cooper method, along with fine tuning to compare with the control performance of the model predictive control (MPC) by Wahid and Taqwallah (2018). Fine tuning MMPC controller with FOPDT model obtained by method 2 (Smith) without combining it with MPC model gives the best results because it stabilizes the flow faster based on setpoint. Parameter values of T, P, and M on the MMPC controller are 1, 341, and 121 on the compressor unit and 1, 45, and 21 on the steam reformer unit. Improvement of this MMPC on compressor unit 1 is 85.84%, compressor unit 2 61.39%, compressor unit 3 is 94.57%, and compressor unit 4 is 73.35%. In steam reformer unit, improvement of fine-tuned MMPC is 63.34% on heater and 80.16% on combustor.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Farhan Pratama
"Tingginya kandungan gas CO2 pada cadangan gas alam di Indonesia merupakan tantangan yang cukup berdampak bagi proses produksi dan pemanfaatan cadangan gas alam tersebut. Untuk meningkatkan aspek teknis dan terhindar dari masalah-masalah operasional pada proses penghilangan gas CO2, salah satu aspek yang dapat ditingkatkan adalah sistem pengendalian yang diaplikasikan ke sistem tersebut. Adanya variabel disturbance pada suatu sistem dapat menurunkan kinerja sistem pengendali yang digunakan. Dalam mengatasi masalah tersebut, aplikasi pengendali multi-loop PI dengan melibatkan disturbance model dinilai mampu meningkatkan kinerja sistem pengendalian dan mengeliminasi efek dari variabel disturbance tersebut. Dengan demikian, penelitian ini bertujuan untuk memperoleh disturbance model berdasarkan first order plus dead time (FOPDT) yang telah diverifikasi dan memperoleh kinerja pengendalian yang optimal dengan melibatkan model tersebut ke dalam sistem pengendali multi-loop PI. Dalam memperoleh kinerja pengendalian yang optimal dilakukan proses tuning dengan menggunakan metode biggest log modulus tuning (BLT) dan fine tuning, untuk dibandingkan dengan kinerja pengendalian multivariable model predictive control (MMPC) oleh Wahid, Meizvira dan Wiranoto (2018) pada sistem linear dan non-linear. Disturbance model dirancang berdasarkan perubahan variabel disturbance laju alir gas alam dengan membuat setpoint controlled variable (CV) tidak berubah, yaitu tekanan gas alam umpan sebesar 511,4 psia dan laju alir make-up water sebesar 10,5 psig. Hasil disturbance model yang paling merepresentasikan sistem yang dikendalikan adalah yang diperoleh menggunakan metode Solver. Dengan melakukan uji perubahan setpoint dan variabel disturbance, diketahui bahwa pengendali multi-loop PI-fine tuning menghasilkan kinerja pengendalian yang lebih baik daripada sistem pengendali MMPC, PI re-tuning dan multi-loop PI-BLT, baik pada sistem linear maupun non-linear. Hal ini menunjukkan bahwa penyusunan pengendali multi-loop PI pada sistem linear dengan melibatkan disturbance model dapat digunakan sebagai dasar dalam meningkatkan kinerja pengendalian pada sistem non-linear.

The high content of CO2 in natural gas reserves in Indonesia is a challenge that has quite an impact on its production and utilization process. To improve the technical aspects and avoid operational problems in the CO2 gas removal, one aspect that can be improved is the applied control system. The existence of a disturbance variables in a system may downgrade the performance of the used control system. To overcome this problem, the application of a multi-loop PI controller which involves disturbance model is considered to be able to improve the performance of the control system and eliminate the effects of the disturbance. Thus, this study aims to obtain a disturbance model based on the verified first order plus dead time (FOPDT), to be applied to the design of a linear multi-loop PI control system. To obtain optimal control performance of multivariable model predictive control model (MMPC) which has been conducted by Wahid, Meizvira and Wiranoto (2018), both on linear and non-linear system. The disturbance model is designed based one changes in the natural gas flow rate as disturbance variable by setting the setpoint of all controlled variables (CV) unchanged), which are the feed natural gas pressure on 511,4 psig, and make-up water flow rate on 10,5 psig. Through setpoint and disturbance variable change tests, it is known that the multi-loop PI-fine tuning controller produces better control performance than MMPC, PI re-tuning and multi-loop PI-BLT control system, both on linear and non-linear systems. Thus, by involving the disturbance model on linear multi-loop PI controller system design might be a bases for improving control system performance in non-linear system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library