Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Ardya Pratama
"Penggunaan kanal mikro dengan nanofluida dapat diaplikasikan dalam upaya meningkatkan laju perpindahan kalor. Dalam penelitian ini, geometri kanal mikro yang digunakan adalah lurus, trapezoid, pyramid dan sinusoidal dengan Al2O3-H2O dan TiO2- H2O sebagai nanofluida. Diameter dan panjang microchannel adalah 0,2 mm dan 10 mm. Fraksi volume (vol%) untuk nanofluida adalah 0%, 0,1%, 0,3%, 0,5% dan 0,7%. Penelitian ini menggunakan aliran laminar dan heat flux sebesar 80.000, 90.000 dan 100.000 W/m2. Studi saat ini bertujuan untuk mengetahui pengaruh bentuk geometri laluan kanal mikro dengan berbagai fraksi nanofluida. Hasil ouput dari Simulasi CFD adalah data lokal, average data, kontur kecepatan, profil kecepatan dan kontur temperatur. Hasil penelitian menunjukkan bahwa kanal mikro berbentuk sinusoidal dapat meningkatkan laju perpindahan kalor lebih baik daripada geometri straight, trapezoid dan pyramid. Pada kanal mikro trapezoid, pyramid dan sinusoidal terjadi kenaikan Nu masing-masing sebesar 36,38%, 36,61% dan 81,58% dari geometri straight. Nano fluida TiO2 dengan fraksi 0,7 vol% dan Al2O3 0,7 fraksi vol% terjadi kenaikan Nu masing-masing sebesar 6,02% dan 1,91% dari fluida water.

To improve the rate of heat transfer, using microchannel and nanofluid can be applied. Geometry of straight, trapezoid, pyramid and sinusoidal microchannel using Al2O3- H2O and TiO2- H2O as nanofluid is presented here. The diameter and the length of microchannel are 0.2 mm and 10 mm. Volume fraction (vol%) for nanofluids are 0%, 0.1%, 0.3%, 0.5% and 0.7 %. This study using laminar flow and heat flux variations of 80,000, 90,000 and 100,000 W/m2. The current study aims to compare the various microchannel geometric shapes with various nanofluid fractions. Output from CFD simulation generate the data for local data, Average data, velocity contour, velocity profile and temperature contour. The result shown sinusoidal microchannel improve rate of heat transfer better than straight, trapezoid, and sinusoidal. Trapezoid, pyramid, and sinusoidal microchannel improve Nusselt number up to 36.38%, 36.61%, and 81.58% from straight. TiO2 0,7 vol% and Al2O3 0,7 vol% nanofluid improve Nusselt number up to 6.02% and 1.91% from water"
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dhifan Kemal Akbar
"Permintaan energi dari sumber daya terbarukan terus mendorong kebutuhan pembangkit
listrik tenaga angin di Indonesia. Tujuan studi adalah memaparkan pemodelan pengambilan
keputusan lokasi turbin angin dan mendesain teknologi turbin angin yang baik digunakan di
Indonesia. Studi ini, menggunakan metode Multi-Criteria Decision Making sebagai metode
pengambilan keputusan yang diintegrasi dengan metode Geographic Information System
sebagai metode penentuan lokasi dan teknologi yang cocok untuk membangun turbin angin.
Selanjutnya hasil akan digunakan sebagai parameter desain awal teknologi turbin angin.
Selama proses analisa, faktor berupa multivariat dipertimbangkan. Cakupan wilayah pada
studi ini adalah negara Indonesia.
Hasil studi berupa peta kecocokan wilayah dengan energi angin. Parameter kecocokan
dibagi menjadi empat yaitu "sangat cocok", "cocok", "kurang cocok", dan "tidak cocok".
Hasil menyimpulkan bahwa 40% area Indonesia masuk ke dalam kategori "cocok" dengan
energi angin khususnya di Pulau Sulawesi dan Nusa Tenggara Timur. Sementara itu, 20% area
Indonesia masuk ke dalam kategori "tidak cocok" berdasarkan kondisi geografi setempat,
meskipun kecepatan angin yang tinggi, dan rentan terhadap bencana alam. Identifikasi area
kecocokan ini akan menjadi pertimbangan awal untuk desain teknologi turbin angin yang
optimal bagi Indonesia.
Kerangka pemodelan ini dapat mendorong transisi energi terbarukan tanpa memandang
daerah khusus yang diharapkan dapat berkontribusi sebanyak 8% dari total target pencapaian
transisi energi terbarukan Indonesia 2025.

Demand for energy from renewable sources continues to drive the need for wind power
plants in Indonesia. The purpose of the study is to describe modeling decision making for wind
turbine locations and to design wind turbine technology that is well used in Indonesia. This
study uses the Multi-Criteria Decision Making method as a decision-making method that is
integrated with the Geographic Information System method as a location determination
method and suitable technology for building wind turbines. Furthermore, the results will be
used as initial design parameters for wind turbine technology. During the analysis process,
multivariate factors are considered. The area covered in this study is Indonesia.
The results of the study are in the form of a suitability map of the area with wind energy.
The match parameter is divided into four, namely "very suitable", "suitable", "less suitable",
and "not suitable". The results conclude that 40% of Indonesia's area falls into the "suitable"
category for wind energy, especially on the islands of Sulawesi and East Nusa Tenggara.
Meanwhile, 20% of Indonesia's area falls into the "unsuitable" category based on local
geographic conditions, despite high wind speeds, and is vulnerable to natural disasters.
Identification of this suitability area will be the initial consideration for the optimal wind
turbine technology design for Indonesia.
This modeling framework can encourage the renewable energy transition regardless of
special regions which are expected to contribute as much as 8% of the total target of achieving
Indonesia's 2025 renewable energy transition.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library