Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 8 dokumen yang sesuai dengan query
cover
Anak Agung Ngurah Gde Sapteka
Abstrak :
Avalanche Photodiode (APD) merupakan divais semikonduktor yang sangat sensitif untuk mengubah cahaya menjadi arus atau tegangan berdasarkan fenomena avalanche, yakni suatu fenomena yang terjadi pada material semikonduktor ketika carriers pada region transisi dipercepat oleh medan listrik untuk memperoleh energi yang cukup untuk membentuk pasangan elektron-hole bebas melalui benturan - benturan dengan elektron-elektron yang terikat. Pada tesis ini dilakukan perancangan dan simulasi APD untuk mendeteksi cahaya visible dengan memperhitungkan efek dead space berdasarkan penelitian Pauchard dan kawan-kawan. Rancangan divais APD dengan bahan silikon terdiri dari lima layer yakni, yakni layer p1+ dengan konsentrasi 1020 /cm3, layer dengan konsentrasi 1011 /cm3, layer p2+ dengan konsentrasi 1019 /cm3, layer n dengan konsentrasi 1017 /cm3 dan layer n+ dengan konsentrasi 1020 /cm3. Adapun panjang geometri masing-masing layer berturut-turut setara dengan light penetration depth minimum, selisih antara light penetration depth maksimum dengan light penetration depth minimum, 100 nm, panjang multiplication region (MR = 370 nm, 470 nm atau 570 nm), dan 200 nm. Simulasi APD dilakukan dengan komputasi numerik dengan perangkat lunak Matlab versi 7.11.0.584. untuk menentukan dead space, struktur divais, koefisien ionisasi dan total mean gain. Efek dead space pada rancangan APD dengan panjang MR sebesar 370 nm; 470 nm dan 570 nm menghasilkan nilai maksimum total mean gain berturut-turut sebesar 9,72; 25,82 dan 50,19. Rancangan-rancangan ini memiliki nilai maksimum elektron dead space sebesar 112,7 nm dan nilai maksimum hole dead space sebesar 152,4 nm sehingga disimpulkan bahwa perancangan APD untuk mendeteksi cahaya visible memerlukan MR dengan panjang minimum 152,4 nm. ......An avalanche photodiode (APD) is a highly sensitive semiconductor device to convert light to electricity through avalanche multiplication phenomena, a phenomena that can occur in semiconductor materials when the carriers in the transition region are accelerated by the electric field to energies sufficient to free electron-hole pairs via collisions with electron bond. This thesis carried out the design and simulation of APD to detect visible light by calculating the effect of dead space based on research Pauchard et al. The design of APD device using silicon material composed of five layers namely, layer p1+ with a concentration of 1020/cm3, layer with a concentration of 1011/cm3, layer p2+ with a concentration of 1019/cm3, layer n with a concentration of 1017/cm3 and layer n+ with a concentration of 1020/cm3. The geometry length of the layers are equal to minimum light penetration depth, difference between maximum light penetration depth and minimum light penetration depth, 100 nm, length of multiplication region (MR = 370 nm, 470 nm or 570 nm), and 200 nm respectively. APD simulation performed with numerical computing using Matlab software version 7.11.0.584 to determine dead space, device structure, ionization coefficient and total mean gain. The dead space effect on APD designs with MR of 370 nm MR; 470 nm and 570 nm produce maximum value of total mean gain of 9.72; 25.82 and 50.19. respectively. These designs have a maximum value of electron dead space of 112.7 nm and a maximum value of hole dead space of 152.4 nm so it concluded that the design of an APD to detect visible light requires MR with minimum length of 152.4 nm.
Depok: Fakultas Teknik Universitas Indonesia, 2011
T29534
UI - Tesis Open  Universitas Indonesia Library
cover
Albertus Bramantyo
Abstrak :
ABSTRAK
Penelitian dalam bidang nanoteknologi telah berkembang pesat dalam dekade terakhir ini, salah satunya adalah Single-Electron Devices. Dalam skripsi ini, kurva karakteristik arus-tegangan dari divais single-electron transistor (SET) disimulasikan dalam kasus empat parameter kerjanya divariasikan secara satu per satu. Keempat parameter itu adalah kapasitansi, resistansi, temperatur, dan impuritas. Struktur divais SET yang disimulasikan terbagi menjadi dua, satu yang menggunakan dua kapasitor dan lainnya yang menggunakan tiga kapasitor. Ketika simulasi dimulai, hanya satu parameter yang nilainya divariasikan sementara ketiga parameter lainnya tetap dijaga pada nilai awal yang telah ditentukan sebelum simulasi berjalan. Simulasi dijalankan dengan menggunakan Matlab 2008. Metode persamaan diturunkan berdasarkan master equation. Salah satu hasil yang didapat dari riset ini adalah resistansi sebagai parameter yang memberikan pengaruh paling signifikan pada rentang arus yang diukur, yaitu 10-11 A hingga 10-10 A pada struktur dua kapasitor dan 10-9 A hingga 10-8 A pada struktur tiga kapasitor. Adapun beberapa efek yang terjadi pada kurva karakteristik arus-tegangan adalah perubahan kualitas grafik, melemah/menguatnya karakteristik eksponensial dan/atau ideal, dan perubahan nilai step-width dan/atau step-height.
ABSTRACT
The research in the field of nanotechnology has advanced rapidly within the last decade, one of them being Single-Electron Devices. In this script, the current-voltage characteristic curve of single-electron transistor (SET) device are simulated in the case of the four working parameters were varied one by one. Those four parameters were capacitances, resistances, temperature, and impurity. The device?s structure of SET being simulated was divided into two, one which was using two capacitors and the other which was using three capacitors. When the simulation was run, there is only one parameter which value was varied while the other three parameters were kept at starting value which had been decided before the simulation was run. The simulation was run by using Matlab 2008. The equation method was derived from master equation. One of the results gained from this research is resistance as the parameter which has the most significant influence over the range of the current being measured, which is 10-11 A to 10-10 A in two capasitors structure and 10-9 A to 10-8 A in three capasitors structure. Some of the effects that happened to the current-voltage characteristic curve are the change of graphical quality, the exponential and/or ideal characteristic becomes strongger/weaker, and the value change of step-width and/or step-height.
Depok: Fakultas Teknik Universitas Indonesia, 2011
S372
UI - Skripsi Open  Universitas Indonesia Library
cover
Vincentius Ryan Cokrodiharjo
Abstrak :
Perkembangan teknologi dalam bidang nanoteknologi sangatlah berkembang pesat. Single electron transistor (SET) adalah salah satu aplikasinya. SET beroperasi menggunakan prinsip coulomb blockade. Coulomb blockade muncul pada tegangan source-drain yang sangat rendah. Coulomb blockade dapat dihilangkan dengan mengubah tegangan gate dari dalam ke luar coulomb blockade. Di luar coulomb blockade, arus dapat mengalir antara source dan drain. Pada tegangan source-drain (Vds) yang diberikan, arus SET dapat dimodulasikan dengan tegangan gate (Vg). Dengan menggeser tegangan gate, arus dapat berosilasi antara nol (coulomb blockade) dan tidak nol (no coulomb blockade). Osilasi ini dikenal dengan coulomb oscillation. Dalam skripsi ini, analisa coulomb oscillation dari single electron transistor (SET) disimulasikan dengan menggunakan perbandingan 2 tegangan bias. Yang pertama adalah tegangan bias yang melewati coulomb blockade dan yang kedua adalah tegangan bias yang tidak melewati coulomb blockade. Struktur divais SET yang digunakan adalah struktur double barrier tunnel junction (DBJT). Simulasi menggunakan Matlab R2009a. Salah satu hasil yang diperoleh dari simulasi yang dilakukan ini adalah dihasilkan puncak gunung sebesar 61.35 pA yang menggantikan lembah pada coulomb oscillation ketika menggunakan tegangan bias 0.0197 volt. Bentuk puncak gunung pada coulomb oscillation ini ditentukan oleh perbandingan tinggi dari diamonds yang dilewati oleh tegangan bias yang dibentuk dari diagram stabilitas. Tinggi diamonds pada diagram stabilitas ini ditentukan oleh besar kapasitansi, background charge, dan tegangan gate. ......Technology development in the field of nanotechnology is growing rapidly. Single Electron Transistors (SET) is one of the application. SET operates using principle of coulomb blockade. Coulomb blockade appears at very low sourcedrain voltage. The Coulomb blockade can be removed by the changing of gate voltage from inside Coulomb blockade to the outside. Outside the Coulomb blockade, a current can flow the between the source and drain. At a given sourcedrain voltage V, the SET current can be modulated by gate voltage Vg. By sweeping the gate voltage, the currents oscillate between zero (Coulomb blockade) and non-zero (no Coulomb blockade). This oscillation is known by coulomb oscillation. In this script, analysis of coulomb oscillation of single electron transistor (SET) simulated by using comparison of two bias voltage. First is bias voltage passing through the coulomb blockade and second is bias voltage that does not pass through coulomb blockade. Structure of the SET device used is the structure of double barrier tunnel junction (DBJT). Simulation uses Matlab R2009a. One of the results obtained from a this simulation is produced a mountain peak of 61.35 pA that replaces the valley on coulomb oscillation when using bias voltage 0.0197 volts. The form of the peak mountain on coulomb oscillation is determined by the ratio of the height of the diamonds that are bypassed by bias voltage which is formed of the stability diagram. Height of the diamonds on stability diagram determined by large capacitance, background charge, and gate voltage.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42921
UI - Skripsi Open  Universitas Indonesia Library
cover
Mohammad Ali Tamam
Abstrak :
Elektron dapat dipindahkan satu persatu dalam konsep Single Electron Transistor (SET). Salah satu keunggulan SET adalah kemampuannya untuk mendeteksi adanya muatan yang sangat kecil. Dalam konsep quantum computing, pendeteksian ini diperlukan untuk menentukan kondisi dari suatu Quantum Dot (QD), apakah dalam kondisi logika 0 (tidak ada elektron) atau 1 (ada elektron). Pada riset ini, desain Double Quantum Dot (DQD) akan diteliti agar dapat mengontrol keberadaan elektron dalam suatu dot sebagai implementasi konsep quantum computing. Selanjutnya, desain SET charge detector akan ditambahkan untuk mendeteksi keberadaan elektron tersebut. Desain DQD dan SET charge detector akan disimulasikan dengan nilai parameter tertentu menggunakan software SIMON 2.0. Dari simulasi menggunakan rangkaian yang didesain, didapatkan bahwa keberadaan sebuah elektron dapat dikontrol dengan pemberian tegangan gate sebesar 200 µV. Antara gate dan QD dipisahkan oleh kapasitor sebesar 500 aF. Keberadaan elektron pada QD dideteksi oleh SET charge detector dengan terjadinya arus pada source. ......Electrons can be moved one by one in the concept of Single Electron Transistor (SET). One of the advantages of SET is its ability to detect the presence of a very small charge. In quantum computing concept, the detection is required to sense the condition of a Quantum Dot (QD), does the logic states 0 (there is no an electron) or 1 (there is an electron). In this research, design of a Double Quantum Dot (DQD) will be examined in order to manipulate the presence of electron in a QD as the implementation of quantum computing concept. Furthermore, design of a SET charge detector will be added to detect the presence of the electron. Design of DQD and SET charge detector will be simulated under certain parameter values using SIMON 2.0 software. From simulation based on our proposed circuit, we found that the existence of an electron can be controlled by giving the gate voltage of 200µV. Gate is separate from QD by a capacitor of 500 aF. The existence of electron in the QD is detected by the SET charge detector with presence of current at the source.
Depok: Fakultas Teknik Universitas Indonesia, 2013
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Lazuardy
Abstrak :
Skripsi ini mengimplementasikan struktur superlattice dari bahan amorphous silicon dan nanocrystalline silicon sebagai lapisan intrinsik dalam sel surya berbasis p-i-n untuk meningkatkan performa sel surya berbasis thin film silicon. Penggunaan struktur superlattice dimaksudkan untuk menutup kekurangan dari masing-masing bahan dan meningkatkan efisiensi. Amorphous silicon digunakan untuk mencapai absorpi cahaya yang baik, sementara nanocrystalline silicon digunakan untuk meningkatkan mobilitas carrier dan mengurangi degradasi akibat cahaya. Variasi struktur berupa jumlah lapisan dan tebal lapisan dilakukan untuk mencari efisiensi terbaik. Simulasi dilakukan menggunakan perangkat lunak wxAMPS untuk menghitung performa dari divais yang dirancang, dan efisiensi sebesar 10,8707% berhasil didapatkan. ......This bachelor thesis implements the usage of superlattice stucture of amorphous and nanocrystalline silicon as the intrinsic layer of a p-i-n solar cell to increase the performance of a thin film solar cell. The superlattice structure is used to overcome the shortcomings of each material to increase efficiency. Amorphous silicon is used for better light absorption, while nanocrystalline silicon in used for better carrier mobility and reduce light induced degradation. Structural variation in layer number and layer thickness is done to find the best result. Simulation is done by using wxAMPS program to calculate the performance of designed device and an eficiency of 10,8707% has been achieved.
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47691
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anak Agung Ngurah Gde Sapteka
Abstrak :
Riset ini difokuskan pada karakteristik linier arus-tegangan dioda P-I-N silikon skala nano doping tinggi dalam rentang temperatur dari 50K hingga 250 K serta karakteristik arus-tegangan dan konduktansi dioda P-N Silikon skala nano doping tinggi pada temperatur 5,5K. Untuk itu dioda P-N dan P-I-N dengan konsentrasi doping tinggi difabrikasi pada wafer ultra tipis berstruktur silicon-oninsulator (SOI). Dari hasil fabrikasi telah diperoleh konsentrasi doping tinggi Boron dan Phosphorus pada divais dioda mencapai 1×1020 cm-3 and 2×1020 cm-3, berturut-turut. Pengukuran karakteristik arus-tegangan dioda P-I-N silikon skala nano doping tinggi dilakukan pada beberapa divais dengan lapisan intrinsik sepanjang 200 nm dan 700 nm. Linieritas arus pada rentang forward bias dari 1,5 V hingga 2,0 V dan rentang temperatur dari 50 K hingga 250 K menunjukkan divais ini sesuai untuk sensor temperatur rendah. Pada pengukuran juga diperoleh data bahwa dioda P-I-N silikon skala nano doping tinggi menghasilkan arus yang lebih tinggi saat temperatur diturunkan dalam rentang forward bias dari 1,5 V hingga 2,0 V. Selain itu juga diperoleh data bahwa divais skala nano dengan lapisan intrinsik yang lebih panjang dan lebih lebar akan menghasilkan arus yang lebih tinggi pada rentang forward bias dari 1,5 V hingga 2,0 V dan temperatur dari 50K hingga 250K. Hasil pengukuran pada dioda P-N silikon skala nano doping tinggi pada rentang forward bias hingga 0,1 Volt maupun rentang reverse bias hingga -0,1 Volt menghasilkan beberapa puncak konduktansi yang menunjukkan kesesuaian nilai dengan level energi density of state dua dimensi (2D DOS) dan level energi kombinasi phonon pada temperatur 5,5K. Pada forward bias, level energi diskret heavy hole, light hole, serta kombinasi phonon TA, LA, TO dan LO berkontribusi signifikan pada puncak konduktansi dalam rentang tegangan hingga 0,1 Volt. Demikian juga halnya pada reverse bias, level energi diskret elektron 2-fold valley, 4-fold valley, serta kombinasi phonon TA, LA, TO dan LO berkontribusi signifikan pada puncak konduktansi dalam rentang tegangan hingga -0,1 Volt. Transport elektron pada dioda P-N Silikon dalam skala nano doping tinggi akan mengalami puncak konduktansi saat elektron memiliki energi yang sama dengan level diskret energi 2D DOS. Hal ini membuktikan adanya phonon-assisted tunneling pada dioda P-N silikon skala nano doping tinggi.
This report is focused on linier current-voltage (I?V) characteristic of highly-doped nanoscale Silicon P-I-N diodes at temperature from 50K to 250K and also I-V and conductance characteristics of highly-doped nanoscale Silicon P-N diode at temperature 5.5K. For that purpose, we fabricated nano scale P-I-N and P-N diodes within ultra thin silicon-on-insulator (SOI) structures. From fabrication, we achieved high doping concentrations of Boron and Phosphorus in SOI diodes, 1×1020 cm-3 and 2×1020 cm-3, respectively. Measurement of current-voltage characteristics of highly-doped nanoscale silicon PIN diode is performed on devices with intrinsic layer length of 200 nm and 700 nm. The current linearity under forward bias range from 1.5 V to 2.0 V and temperature range from 50K to 250K shows that these devices are suitable for lowtemperature sensor. The measurement data shows also that highly-doped nanoscale silicon PIN diode produces higher current when the temperature is lowered under forward bias from 1.5 V to 2.0 V. In addition, the data shows that nanoscale devices with longer and wider intrinsic layer would generate higher current under forward bias range from 1.5 V to 2.0 V and temperature from 50K to 250K. Measurement of highly-doped nanoscale silicon P-N diode under forward bias to 0.1 Volt and also reverse bias to -0.1 Volt results conductance peaks that show relationship with two-dimensional density of state (2D DOS) and phonon combination energy level at temperature 5.5K. Under forward bias, discrete energy level of heavy hole, light hole and phonon combination of TA, LA, TO and LO have significant contribution to conductance peaks in range 0.1 Volt. Also under reverse bias, discrete energy level of electron 2-fold valley, 4-fold valley and phonon combination of TA, LA, TO and LO have significant contribution to conductance peaks in range -0.1 Volt. Electron transport of highly-doped nanoscale silicon P-N diode will experience conductance peaks when it has equal energy with 2D DOS discrete energy level. It proves the existence of phonon-assisted tunneling on highly-doped nanoscale silicon P-N diode.
Depok: Fakultas Teknik Universitas Indonesia, 2016
D2149
UI - Disertasi Membership  Universitas Indonesia Library
cover
Teguh Firmansyah
Abstrak :
Spektrum dari localized surface plasmon resonance (LSPR) yang dapat dikonfigurasi ulang serta teknologi sensor yang memiliki sensitivitas tinggi dengan kemampuan multikinerja sangat dipelukan untuk mendukung Society 5.0. Akan tetapi banyak aplikasi LSPR dengan spektrum yang sulit untuk dikonfigurasi/tuning serta sensor yang tidak sensitive dan mono fungsi. Pada disertasi ini diusulkan pengembangan spektrum LSPR yang dapat dikonfigurasi serta dilajutkan untuk mengembangkan sensor yang memiliki kemampuan multifungsi. Kontribusi penelitian yang dilakukan ini dapat dibedakan menjadi tiga buah cabang utama. Pertama, pengembangan reconfigurable LSPR spektrum dengan mendeposisi nano partikel emas (AuNPs) pada substrat piezoelektrik 36XY-LiTaO3. Kedua, hasil deposisi AuNPs pada bahan piezoelektrik digunakan untuk menghasilkan sensor multifungsi yang mengintegrasikan sensor shear-horizontal surface acoustic waves (SAW) dan sensor LSPR. Ketiga, mendeposisi AuNPs pada substrat kaca yang memiliki struktur multi-layer. Selain itu, pada substrat kaca juga dipabrikasi microwave ring resonator sehingga menghasilkan sensor microwave, sehingga dapat mengkombinasi sensor microwave dan sensor LSPR secara bersamaan. Adapun penjelasan lebih terperinci sebagai berikut ini. Kontribusi pertama dari disertasi ini difokuskan kepada pengembangan reconfigurable LSPR sepktrum. Dimana LSPR dihasilkan dari deposisi AuNPs pada substrat piezoelektrik 36XY-LiTaO3. Kemudian, kemampuan reconfigure nya didapatkan dari posisi dinamis dari array AuNPs yang ikut berosilasi akibat vibrasi dari shear horizontal surface acoustic waves (SH-SAWs). Vibrasi ini diperoleh setelah mencatu sumber listrik ke devais SH-SAW melalui interdigital transducers (IDTs). Hasil eksperiment mengkonfirmasi bahwa perbandingan kondisi OFF dan ON akan menghasilkan efek blue-shift dan perubahan nilai Q-factor dari spektrum LSPR. Selanjutnya, hasil gambar morfologi dari SEM digunakan untuk menganalisis dan mensimulasi menggunakan komputasi finite-difference time-domain (FDTD). Model nya kemudian diekspansi menjadi struktur dimer-AuNP, dan array AuNPs dengan menggunakan gap sebagai parameter. Hasil simulasi juga mengkonfirmasi efek dari blue-shift dari spektrum LSPR. Kontribusi kedua dari disertasi ini yaitu diusulkan pengembangan sensor multifungsi yang dapat mendeteksi permittivitas (εr), konduktivitas (s), dan refraktiv index (n) secara simultan. Sensor multifungsi yang diusulkan, dibangun dengan mengintegrasikan sensor SH-SAW dan sensor LSPR. Sensor SH-SAW dibangun dengan cara memfabrikasi IDTs pada substrat piezoelektrik 36XY-LiTaO3. Sementara itu, sensor LSPR dibangun dengan mendeposisi AuNPs pada permukaan propagasi dari SH-SAW. Menariknya, mendeposisi AuNP di permukaan propagasi SH-SAW tidak hanya menghasilkan sensor LSPR namun juga dapat meningkatkan sensitivitas sensor SH-SAW. Peningkatan sensitivitas ini terverifikasi menggunakan pengukuran domain frekuensi oleh a vector network analyzer (VNA) dan domain waktu dengan mengaplikasikan sinyal amplitude shift keying. Sementara itu, software CST digunakan untuk mensimulasikan plasmonic enhance near field-nya. Kemudian investigasi morphologi digunakan perangkat atomic force microscopy (AFM). Hybrid sensor yang diusulkan memiliki rentang deteksi εr = 25 – 85), s = 0.00528–0.02504 S/m, dan n = 45.5–201.9 nm/RIU. Efek cross-sectional dari sensor SH-SAW ke sensor LSPR dan sebaliknya juga diinvestigasi menggunakan sinyal sinusoidal OFF/ON dan cahaya OFF/ON. Hasil pengukuran menunjukkan bahwa sensor SH-SAW tidak terpengaruh oleh cahaya. Akan tetapi, sensor LSPR sedikit dipengaruhi oleh sensor SH-SAW karena efek vibrasi yang berakibat pada efek blue-shift. Namun pengaruh ini tidak signifikan terhadap kinerja sensor multifungsi. Secara umum, sensor yang diusulkan memiliki sensitivitas tinggi dengan karakteristik independen. Kontribusi ketiga dari penelitian ini fokus kepada intergrasi microwave sensor (dan LSPR sensor. Microwave sensor dihasilkan dengan mempabrikasi elektroda/resonator yang berbentuk ring resonator pada substrat kaca dengan struktur yang multilayer. Sehingga, apabila sensor tersebut diberi beban cairan Ethanol (EtOH) dengan kadar berbeda maka akan menghasilkan pergeseran frekuensi resonansi dari microwave sensor. Sementara itu, sensor LSPR dihasilkan dengan mendeposisi AuNPs pada substrate kaca bagian tengah. Perubahan nilai refreactive index pada cairan sampel juga akan menghasilkan pergeseran puncak dari LSPR. Hal ini memperlihatkan sensor LSPR telah bekerja. Selain itu, untuk menganalisis struktur multilayer, pada penelitian ini juga dipergunakan metode conformal dan dibandingkan dengan hasil FDTD. Adapun hasil penelitian hibrid microwave sensor dan LPSR sensor dihasilkan pergeseran frekuensi sebesar 416 MHz dengan sensitivitas 5,2 MHz/ . Nilai sensitivitas berada pada rentang 5.36 MHz/Er – 14.37 MHz/Er. Nilai rentang normalisasi sensitivity berada pada rentang 0.312 – 1.246%. Hasil pengukuran dengan dan tanpa cahaya memperlihatkan hasil yang konstan, sehingga memperlihatkan independensi dari sensor. Sementara itu, hasil pengukuran sensor LSPR memperlihatkan terjadi pegeseran panjang gelombang sekitar 20 nm sampai 60 nm. Sementara itu nilai sensitivitas sensor refraktive index berada pada rentang 20.0 - 162.6 nm/RIU. Akhirnya, berdasarkan hasil dan sebagai temuan utama, deposisi AuNPs pada bahan dielektrik seperti bahan 36XY-LiTaO3 atau bahan kaca dapat meningkatkan fungsionalitas perangkat diluar fungsi dasar umum yang diketahui. Secara khusus, fungsionalitas perangkat dapat ditambahkan dengan fenomena plasmonik atau fungsi sensor indeks bias. ......A reconfigurable localized surface plasmon resonance (LSPR) spectrum and integration of high-sensitivity sensors with multiple sensing performance for the environmental detection are required to support Societies 5.0 and strengthen sustainable development goals programs. However, many LSPR applications lack configurability performance and sensors with low sensitivity that stand alone. In this dissertation, a reconfigurable LSPR and multifunctional sensors are proposed. The main study can be separated into three branches. The first is a deposition of gold nanoparticles (AuNPs) on 36XY-LiTaO3 piezoelectric substrate. It can generate a reconfigurable LSPR. Second, it can be applied for multifunctional sensor applications by combining the LSPR sensor and acoustic sensor. The third is to deposit AuNPs on a glass substrate with a multilayered microwave ring resonator to obtain multifunctional sensors between the LSPR sensor and microwave sensor (MS). The first contribution of this dissertation is focused on the investigation of LSPR with reconfigurable capability. The LSPR was produced by deposition of AuNPs on the 36XY-LiTaO3 piezoelectric substrate. Then, the reconfigurable capability was obtained by the dynamic array AuNPs position. Moreover, the dynamic array AuNPs was induced by shear horizontal surface acoustic waves (SH-SAWs) vibration after applying an electric signal through interdigital transducers (IDTs), the ON-condition. The experimental results confirmed that compared to OFF-condition, the ON-condition generates a blueshift effect. In general, the peak position (lP) has shifted to a lower wavelength with a quality factor adjustment. The scanning electron microscope (SEM) images of the morphological structure of AuNPs are utilized to perform the finite-difference time-domain (FDTD) analysis. Then, the model was expanded to dimer AuNPs and arrays AuNPs with dynamic coupling gap and variation arrays structures. As a result, the FDTD simulation confirmed a blueshift effect spectrum characteristic. The second contribution is proposing a multifunctional sensor for the detection of permittivity (εr), conductivity (s), and the refractive index (n) simultaneously. The multifunctional sensor was developed based on the SH-SAW sensor and LSPR sensor. Moreover, the IDTs were fabricated on the 36XY-LiTaO3 substrate to develop the SH-SAW sensor. Then, the AuNPs were deposited on the propagation surface of the SH-SAW sensor to obtain the LSPR sensor. Interestingly, the deposited AuNPs on SH-SAW were not only generating an LSPR sensor but also enhanced the SH-SAW sensor sensitivity. The sensitivity enhancement was verified by frequency-domain measurement using a vector network analyzer and time-domain measurements by utilizing amplitude shift keying signal. A CST software was used for plasmonic enhance near field simulation. Then, atomic force microscopy (AFM) imaging was utilized for morphology characterization. The proposed sensor has detection range of εr = 25 – 85), s = 0.00528–0.02504 S/m, and high sensitivity for n detection (45.5–201.9 nm/RIU). The cross-sectional effects between the SH-SAW sensor and LSPR sensor were also investigated using the sine signal OFF/ON and the light OFF/ON, respectively. The result shows that the SH-SAW sensor was not influenced by light. Moreover, the LSPR sensor was slightly influenced by the SH-SAW sensor due to the vibration effect, and it has a small blueshift effect. However, this effect is not significant to interference sensor performance. In general, the proposed multifunctional sensors have high sensitivity with independent characteristics. The third contribution is focused on the integration of MS and LSPR sensor. The MS was fabricated on a glass. The electrodes have a structure ring resonator with a multilayered configuration. The changes of liquid under test lead to frequency shifting. Then, the LSPR sensor was developed on the low-layered glass by deposition array AuNPs on the glass substrate. Therefore, the liquid under test will have direct interaction with AuNPs. LSPR sensor was examined using wavelength shifting characteristic. A comparison between FDTD and the conformal analytical method is also presented. The simulation result shows that by comparing air and water sample, it has shifted frequency of 395 MHz with the sensitivity of 4.95 MHz/εr. Measurement result show that it has shifted frequency of 416 MHz with the sensitivity of 5.2 MHz/εr. It is shown that the proposed sensor has followed the simulation result. Finally, the proposed sensors are suitable for a chemical environment, with the possibility of integration with a wireless network. Finally, based on the result and as the main finding, the deposition AuNPs on dielectric material such as 36XY-LiTaO3 substrate or glass substrate can improve the device's functionality beyond the known general basic function. In particular, the functionality of the device can add with plasmonic phenomena or a refractive index sensor function.
Depok: Fakultas Teknik Universitas Indonesia, 2022
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Dewi Anggraeni
Abstrak :
Sistem Manajemen Baterai (BMS), yang bertanggung jawab untuk memantau baterai isi ulang, memainkan peran penting dalam melindungi kendaraan dan instrumen listrik. Dua indikator utama yang perlu dipertimbangkan adalah State of Charge (SoC) dan State of Health (SoH). Memperkirakan SoC secara akurat penting untuk mencegah potensi masalah. Selain itu, ruang, waktu komputasi, dan biaya merupakan faktor penting dalam pengembangan perangkat keras. Untuk mengatasi pertimbangan ini, model Extended Kalman Filter (EKF) orde pertama dan Adaptive Extended Kalman Filter (AEKF) dipilih karena pra-pemrosesan datanya lebih sederhana dan akurasinya lebih baik. Estimasi ini didasarkan pada metode matematika. Studi ini merekomendasikan penggunaan metode First-Order Equivalent Circuit Model (ECM) bersama dengan algoritma EKF dan AEKF karena pengaturannya yang mudah dan proses komputasi yang efisien. Melalui penelitian yang melibatkan beberapa siklus pengisian-pengosongan, ditemukan bahwa metode AEKF secara konsisten mengungguli metode EKF dalam hal akurasi SoC. Hal ini semakin diperkuat dengan melakukan pengujian reliabilitas pada metode AEKF, yang menunjukkan akurasi estimasi SoC yang lebih unggul dibandingkan metode EKF ketika diberikan nilai SoC awal yang berbeda. Selain itu, waktu komputasi yang lebih singkat dari metode EKF menjadi pertimbangan untuk penerapan praktis di dunia nyata. Lebih lanjut, percobaan yang dilakukan selama 500 siklus mengungkapkan bahwa estimasi SoH menurun dari 99,97% menjadi 76,1947%, menunjukkan bahwa baterai telah mencapai tahap End of Life (EOL), seperti yang dilaporkan di berbagai jurnal. ......The Battery Management System (BMS), responsible for monitoring rechargeable batteries, plays an essential role in safeguarding electric vehicles and instruments. Two key indicators to consider are State of Charge (SoC) and State of Health (SoH). Accurately estimating SoC is important to prevent potential issues. Additionally, space, computing time, and cost are important factors in hardware development. To address these considerations the first-order Extended Kalman Filter (EKF) and Adaptive Extended Kalman Filter (AEKF) models were selected due to their simpler data pre-processing and better accuracy. These estimations are based on mathematical methods. The study recommends using the First-Order Equivalent Circuit Model (ECM) method in conjunction with the EKF and AEKF algorithms due to their straightforward setup and efficient computational process. Through research involving multiple charge-discharge cycles, it was found that the AEKF method consistently outperformed the EKF method in terms of SoC accuracy. This was further confirmed by subjecting the AEKF method to reliability testing, where it displayed superior SoC estimation accuracy compared to the EKF method when given different initial SoC values. Additionally, the shorter computing time of the EKF method is a consideration for practical real-world implementation. Furthermore, experiments conducted over 500 cycles revealed that SoH estimation declined from 99.97% to 76.1947%, suggesting that the battery has reached the End of Life (EOL) stage, as reported in various journals.
Depok: Fakultas Teknik Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library