Hasil Pencarian

Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Ariyana Dwiputra Nugraha
"ABSTRAK
Material tube yang dioperasikan pada temperatur tinggi, cepat atau lambat akan
mengalami suatu kerusakan akibat pengaruh temperatur yang dikombinasikan
dengan lingkungan korosif, tekanan & tegangan, baik statis maupun dinamis.
Tube boiler yang mengalami indikasi kegagalan yaitu tube dengan material
SA213 TP304H dengan unsur dominan paduan adalah Cr dan Ni. Material dengan
spesifikasi tersebut merupakan material stainless steel yang seharusnya tahan
terhadap korosi, sehingga dianggap perlu dilakukan pengujian dan penelitian guna
menjawab kecurigaan adanya indikasi kegagalan. Metodologi analisa dan
identifikasi yang dilakukan adalah dengan uji merusak yaitu uji spectrometer,
metalografi dan 3D metalografi, SEM dan EDX, kekerasan, serta creep rupture
dengan parameter Larson Miller. Hasil penelitian menunjukan bahwa tube telah
mengalami korosi oksidasi yang cukup parah dan telah terjadi penjalaran
intergranular crack pada material, sehingga ketebalan tube yang tersisa hanya 65
% dari ketebalan total. Unsur dominan pembentuk oksida dan karbida pada
material yaitu oksida Fe (FeO, Fe2O3, dan Fe3O4) dan karbida (Fe, Cr, Ni,
Mn)23C6 atau M23C6. Long-term creep strengh berkurang drastis pada temperatur
650 0C dengan persamaan LMP material adalah 17,239 = T (15 + log tr) 10-3.

ABSTRACT
Material tube operated at high temperatures, sooner or later will suffer damages
due to the influence of temperature combined with a corrosive environment,
pressure and tension, both static and dynamic. Indication of failure in boiler tube
was observed in material tube SA213 TP304H with the dominant element is Cr
and Ni alloys. Materials with these specifications classified as stainless steel
material that should be resistant to corrosion, so it is considered necessary to test
and analize in order to answer suspicions of failure. Methodology for the analysis
and identification is done by destructive test that is spectrometer test,
metallographic and 3D metallography, SEM and EDX, hardness, and creep
rupture with Larson Miller parameter. The results showed that the tube has
experienced severe corrosion and oxidation and also has occurred intergranular
crack propagation in the material, so that the thickness of the tube is decreased to
65% only from total thickness. The dominant element forming the oxide and
carbide materials are iron oxide (FeO, Fe2O3, and Fe3O4) and carbide (Fe, Cr, Ni,
Mn)23C6 or M23C6. Long-term creep strengh is reduced drastically at temperatures
of 650 0C with LMP material equation is 17.239 = T (15 + log tr) 10-3."
Lengkap +
2016
T46750
UI - Tesis Membership  Universitas Indonesia Library
cover
William Horizon
"[Salah satu komponen terpenting pada peluru adalah selongsong yang memuat bubuk mesiu, primer, dan proyektil. Material yang umum digunakan untuk memfabrikasi selongsong peluru adalah cartridge brass (kuningan) yang mengandung 26-32 wt.% Zn. Selongsong peluru diproduksi dengan proses metalurgi yang kontinu, yang terdiri atas pengecoran, pencanaian, dan deep drawing. Dalam proses deep drawing biasanya ditemukan beberapa masalah mayor, seperti keretakan dan perobekan. Untuk meminimalisir masalah tersebut, pengembangan material dengan keuletan yang lebih baik menjadi penting untuk digunakan sebagai selongsong peluru. Mangan digunakan sebagai unsur paduan pada kuningan untuk meningkatkan keuletannya. Pada penelitian ini, paduan Cu-28Zn dengan penambahan 3,2 wt.% Mn difabrikasi dengan pengecoran gravitasi. Untuk menghomogenisasi komposisi kimia, paduan diberi perlakuan panas pada 800 oC selama 2 jam. Kemudian spesimen dicanai dingin dengan deformasi 20, 40, dan 70 % reduksi. Proses anil selanjutnya dilakukan setelah pencanaian dingin sebesar 70 % dengan temperatur 350, 400, dan 450 oC selama 15 menit. Karakteriasi material yang dilakukan pada penelitian ini terdiri dari analisis struktur mikro menggunakan mikroskop optik dan Scanning Electron Microscope (SEM) - Energy Dispersive Spectroscopy (EDS), serta pengujian kekerasan mikro. Hasil penelitian menunjukkan bahwa peningkatan derajat deformasi sebesar 20, 40, dan 70 % menyebabkan butir menjadi semakin pipih dengan L/D ratio masing-masing bernilai sekitar 0,7, 2,2, 7,7, dan 14,1. Selain itu juga terjadi peningkatan nilai kekerasan spesimen, yakni sebesar 56, 127, 145, dan 207 HV secara berurutan. Sementara proses anil setelah canai dingin sebesar 70 % pada temperatur 350, 400, dan 450 oC menyebabkan terjadinya peristiwa stress relieve yang ditandai dengan fenomena recovery, diikuti dengan rekristalisasi (dgrain ~ 7 μm), hingga grain growth (dgrain ~ 14 μm). Selain itu juga terjadi penurunan nilai kekerasan spesimen, yakni sebesar 204, 131, dan 100 HV secara berurutan. Pengaruh penambahan unsur Mn di dalam paduan cartridge brass adalah meningkatkan nilai kekerasan dan memperlambat laju rekristalisasi, dibutuhkan temperatur anil yang lebih tinggi untuk mencapai rekristalisasi sempurna pada paduan cartridge brass dengan penambahan Mn.
One of the most important part of bullet is its cartridge shell which contains gun powder, primer, and projectile altogether. Common material used to fabricate bullet shell is cartridge brass which contains 26-32 wt.% Zn. Cartridge shell is produced by a continuous metallurgical processes, which are casting, rolling, and deep drawing. In deep drawing process, some major problems are typically found, such as cracking and tearing. In order to minimize these problems, it is essential to develop materials with enhanced ductility to be used as cartridge shell. Manganese is used as an alloying element of cartridge brass to increase its ductility. In this research, Cu-28Zn alloy with addition of 3,2 wt.% Mn were fabricated by gravity die casting. To homogenize the chemical composition, the alloy was heated at 800 °C for 2 hours. Afterwards, the specimens were cold-rolled with deformation of 20, 40, and 70 %. Subsequent annealing process after 70 % cold-rolled with temperature of 350, 400, and 450 oC for 15 minutes was carried out. Material characterizations consisted of microstructure analysis using optical microscope and Scanning Electron Microscope (SEM) - Energy Dispersive Spectroscopy (EDS), and microvickers hardness testing. The result showed that higher degree of deformation of 20, 40, and 70 % led to more elongated grains with L/D ratio of 0.7, 2.2, 7.7, and 14.1, respectively. Moreover, the hardness of material increased with the increase in the level of deformation, with the values of 56.1, 126.6, 144.6, and 206.7 HV, respectively. Meanwhile, annealing at the temperatures of 350, 400, and 450 oC to specimens with prior deformation of 70 %, resulted in recovery and stress relieve, followed by recrystallization (dgrain ~ 7 μm), and finally grain growth (dgrain ~ 14 μm). Furthermore, the hardness of material decreased with the increase in level of annealing temperature, with the values of 204, 131, and 100 HV, respectively. The roles of Mn in the cartridge brass is to increase the hardness and to slower the recrystallization rate. In general, addition of Mn in cartridge brass increased the annealing temperatures needed to achieve full recrystallization.;One of the most important part of bullet is its cartridge shell which contains gun powder, primer, and projectile altogether. Common material used to fabricate bullet shell is cartridge brass which contains 26-32 wt.% Zn. Cartridge shell is produced by a continuous metallurgical processes, which are casting, rolling, and deep drawing. In deep drawing process, some major problems are typically found, such as cracking and tearing. In order to minimize these problems, it is essential to develop materials with enhanced ductility to be used as cartridge shell. Manganese is used as an alloying element of cartridge brass to increase its ductility. In this research, Cu-28Zn alloy with addition of 3,2 wt.% Mn were fabricated by gravity die casting. To homogenize the chemical composition, the alloy was heated at 800 °C for 2 hours. Afterwards, the specimens were cold-rolled with deformation of 20, 40, and 70 %. Subsequent annealing process after 70 % cold-rolled with temperature of 350, 400, and 450 oC for 15 minutes was carried out. Material characterizations consisted of microstructure analysis using optical microscope and Scanning Electron Microscope (SEM) - Energy Dispersive Spectroscopy (EDS), and microvickers hardness testing. The result showed that higher degree of deformation of 20, 40, and 70 % led to more elongated grains with L/D ratio of 0.7, 2.2, 7.7, and 14.1, respectively. Moreover, the hardness of material increased with the increase in the level of deformation, with the values of 56.1, 126.6, 144.6, and 206.7 HV, respectively. Meanwhile, annealing at the temperatures of 350, 400, and 450 oC to specimens with prior deformation of 70 %, resulted in recovery and stress relieve, followed by recrystallization (dgrain ~ 7 μm), and finally grain growth (dgrain ~ 14 μm). Furthermore, the hardness of material decreased with the increase in level of annealing temperature, with the values of 204, 131, and 100 HV, respectively. The roles of Mn in the cartridge brass is to increase the hardness and to slower the recrystallization rate. In general, addition of Mn in cartridge brass increased the annealing temperatures needed to achieve full recrystallization., One of the most important part of bullet is its cartridge shell which contains gun powder, primer, and projectile altogether. Common material used to fabricate bullet shell is cartridge brass which contains 26-32 wt.% Zn. Cartridge shell is produced by a continuous metallurgical processes, which are casting, rolling, and deep drawing. In deep drawing process, some major problems are typically found, such as cracking and tearing. In order to minimize these problems, it is essential to develop materials with enhanced ductility to be used as cartridge shell. Manganese is used as an alloying element of cartridge brass to increase its ductility.
In this research, Cu-28Zn alloy with addition of 3,2 wt.% Mn were fabricated by gravity die casting. To homogenize the chemical composition, the alloy was heated at 800 °C for 2 hours. Afterwards, the specimens were cold-rolled with deformation of 20, 40, and 70 %. Subsequent annealing process after 70 % cold-rolled with temperature of 350, 400, and 450 oC for 15 minutes was carried out. Material characterizations consisted of microstructure analysis using optical microscope and Scanning Electron Microscope (SEM) - Energy Dispersive Spectroscopy (EDS), and microvickers hardness testing.
The result showed that higher degree of deformation of 20, 40, and 70 % led to more elongated grains with L/D ratio of 0.7, 2.2, 7.7, and 14.1, respectively. Moreover, the hardness of material increased with the increase in the level of deformation, with the values of 56.1, 126.6, 144.6, and 206.7 HV, respectively. Meanwhile, annealing at the temperatures of 350, 400, and 450 oC to specimens with prior deformation of 70 %, resulted in recovery and stress relieve, followed by recrystallization (dgrain ~ 7 μm), and finally grain growth (dgrain ~ 14 μm). Furthermore, the hardness of material decreased with the increase in level of annealing temperature, with the values of 204, 131, and 100 HV, respectively.
The roles of Mn in the cartridge brass is to increase the hardness and to slower the recrystallization rate. In general, addition of Mn in cartridge brass increased the annealing temperatures needed to achieve full recrystallization.]
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2016
S62216
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hafsah Indrianita Pratiwi
"[Selongsong merupakan salah satu bagian penting pada munisi. Material yang biasanya digunakan untuk mebuat munisi adalah cartridge brass. Dalam pembuatan munisi, sering terdapat masalah yaitu retak dan robek saat proses tarik dalam. Untuk mengurangi masalah tersebut, maka pada penelitian ini mangan digunakan sebagai unsur paduan untuk meningkatkan keuletan cartridge brass. Penelitian ini bertujuan untuk memfabrikasi paduan cartridge brass dengan penambahan unsur Mn serta mengamati pengaruh Mn (1.26, 3.23, dan 5.83 % berat) terhadap struktur mikro dan sifat mekanisnya. Karakterisasi material meliputi uji kekerasan, uji tarik, dan pengamatan struktur mikro menggunakan mirkoskop optik dan SEM/EDX. Hasil pengujian menunjukkan bahwa dengan penambahan 1.26 dan 3.23 wt.% Mn, kekerasan, kekuatan tarik dan keuletan paduan meningkat karena adanya penguatan larutan padat oleh Mn pada fasa α Cu. Sedangkan dengan penambahan Mn sebanyak 5.83 wt.%, kekerasan semakin bertambah namun nilai kekuatan tarik hanya meningkat sedikit dan keuletan menurun karena adanya fasa β? yang terbentuk.

, One important part of bullet is its shell. Common material that is used to make bullet shell is cartridge brass. In the making process of bullet shell there are some problems that are often found such as cracking and torning. In order to minimize those problems, manganese is used in this research to increase cartridge brass’ ductility. This research is intended to fabricate cartridge brass alloy with addition of Mn and to study effect of Mn (1.26, 3.23, and 5.83 wt. %) on microstructure and mechanical properties. It was characterized by hardness testing, tensile testing, and microstructure analysis using optical microscope and SEM/EDX. The result showed that with the addition of 1.26 and 3.23 wt. % Mn, the tensile strength and ductility of the alloys are increased. This is due to to solid solution strengthening mechanism of Mn in single α Cu phase. In the other hand, with the addition of 5.83 wt.% Mn, the hardness and tensile strength increased and the elongation decreased. The reason is because there are β’ phases that occur in this composition.
]
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2016
S62243
UI - Skripsi Membership  Universitas Indonesia Library
cover
David Jendra
"Munisi merupakan salah satu bagian esensial dari sebuah sistem persenjataan. Munisi bertugas sebagai penyimpan dan penyalur daya ledak yang dapat digunakan pada berbagai macam senjata api. Pada beberapa waktu yang lalu, PT. PINDAD mengimpor brass cup sebagai material dasar pembuatan selongsong peluru dalam jumlah besar. Namun ketika tahap manufaktur, bahan impor tersebut mengalami kegagalan mendekati 100% ketika proses lekuk botol. Untuk itu dikembangkanlah paduan cartridge brass yang mampu meningkatkan sifat mampu bentuk, elongasi dan mampu cor. Unsur paduan yang digunakan sebagai alloying element adalah Bismuth (Bi). Bismuth mampu meningkatkan pressure tightness, machinability dan castability paduan cartridge brass pada penambahan optimum. Pada penelitian ini, dikembangkan paduan cartridge brass dengan penambahan 0,1, 0,5 dan 1,0 wt. % Bi. Sampel difabrikasi melalui proses pengecoran gravitasi dengan dimensi 110 x 110 x 6 mm. Sampel kemudian dihomogenisasi selama 2 jam pada suhu 800 ˚C sebelum dikarakterisasi. Karakterisasi material yang dilakukan antara lain pengujian komposisi kimia paduan menggunakan Optical Emission Spectrometry (OES) analisis struktur mikro dengan menggunakan mikroskop optik dan Scanning Electron Microscope (SEM) dan analisis komposisi Energy Dispersive X-Ray (EDX), Hasil gambar struktur mikro dilakukan dengan Image Pro Analysis. Pengujian tarik dan keras juga dilakukan untuk mengetahui sifat mekanik dari paduan cartridge brass. Dari hasil pengujian ditemukan bahwa penambahan wt. % Bi meningkatkan jumlah segregasi Bi dan porositas pada paduan sebesar 1,2, 3,2 and 7,3 % untuk masing-masing komposisi 0,22, 0,41 dan 0,80 wt. % Bi. Pengamatan SEM mengkonfirmasi peningkatan jumlah segregasi Bi baik pada butir maupun batas butir seiring dengan meningkatnya wt. % Bi. Pengujian mekanik menunjukan hasil optimum pada komposisi 0,22 wt. % dengan kekuatan tarik, tegangan luluh dan elongasi masing-masing sebesar 209 MPa, 105 MPa dan 61 % serta hasil deterioratif pada komposisi 0,41 dan 0,80 wt. %. Pengamatan makro dan SEM ? EDX dari permukaan perpatahan mengkonfirmasi jenis perpatahan ulet dan segregasi Bi pada ketiga sampel.

Ammunition is one of the essential aspect of weaponry system. Ammunition acts as a storage and channel for explosive compound in firearms, creating sufficient momentum to expel the bullet. Recently, PT.PINDAD, an Indonesian state owned defense industry, imported cartridge brass in the form of brass cup, which experienced a near 100% failure upon manufacturing. Brass cups fractured before it reached the final form: ammunition?s shell. Hence, cartridge brass is alloyed to breed a new alloy which its castability, formability and elongation increased. In this research, Cartridge brass (Cu-28Zn) is alloyed with Bi, a post transition metal with similar properties of Pb yet non-toxic and environmentally safe. Bismuth addition promotes machinability, pressure tightness and castability. Produced by pre-simulated gravity die casting, a 99.99% pure copper, zinc and bismuth ingot were casted into Cu-28Zn-0,1, 0,5 and 1,0 Bi alloy with dimension of 110 x 110 x 6 mm3. The specimens were homogenized at 800˚C for 2 hours before characterized both mechanically and microstructurally. Chemical composition was tested using Optical Emission Spectrometry, microstructural examination was covered by Optical Microscope, Scanning Microscope Electron ? Energy Dispersive X-Ray analysis (SEM-EDX), image results was also processed by Image Pro Analysis software. Last but not least, Mechanical testing was done by tensile and hardness testing. Results implied that Bi addition increases the area fraction of Bi segregation in the amount of 1,2, 3,2 and 7,3 % for each 0,22, 0,41 and 0,80 wt.% Bi composition. SEM examination confirmed the increase of Bi segregation respective to the increase of Bi addition. Mechanical testing showed optimum value on 0,22 wt. % composition with tensile, yield strength and elongation of 209 MPa, 105 MPa and 61 % respectively while 0,41 and 0,80 wt.% Bi cartridge brass showed deteriorative effect. Macro and SEM ? EDX examination confrmed the vicinity of Bi segregation and ductile mode on fractured surface.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2016
S61900
UI - Skripsi Membership  Universitas Indonesia Library
cover
Imam Basori
"ABSTRAK
Pembahasan mengenai karakteristik deformasi dan pembentukan tekstur pada paduan kuningan masih menyisakan banyak perdebatan, khususnya tingkat deformasi kritis yang merupakan titik awal terjadinya perubahan karakteristik deformasi serta proses transisi dari tekstur tembaga menuju tekstur kuningan dan juga tekstur yang terbentuk selama anil. Beberapa penelitian tentang proses pemaduan mikro dengan menambahkan unsur pemadu seperti Bi, Mn dan Al pada paduan kuningan menunjukkan adanya fenomena penghalusan butir dan perubahan sifat mekanik, akan tetapi pembahasan mengenai pengaruh unsur pemadu tersebut terhadap karakteristik deformasi dan proses pembentukan tekstur paduan kuningan masih belum dilakukan. Pada penelitian ini dilakukan proses pemaduan mikro dengan menambahkan unsur Bi, Mn dan Al pada paduan Cu-29Zn. Proses pemaduan mikro dilakukan melalui proses pengecoran dengan metode gravity die casting. Penambahan Bi dilakukan dengan variasi sebesar 0.5 dan 1 berat, sedangkan Mn dan Al ditambahkan dengan kadar sebesar 2, 4 dan 6 berat. Pelat hasil proses pengecoran dilakukan homogenisasi pada temperatur 800 oC selama 2 jam. Selanjutnya sampel hasil proses homogenisasi akan dilakukan proses pengerolan dingin dengan tingkat deformasi sebesar 20, 40 dan 70 . Pada tahap berikutnya, sampel hasil proses pengerolan dingin akan di anil pada temperatur 300, 400, 500 dan 600 oC selama 30 menit. Proses karakterisasi yang dilakukan meliputi pengujian komposisi kimia, pengamatan struktur menggunakan mikroskop optik dan SEM, pengujian kekerasan, pengujian tarik dan juga pengukuran tekstur.Hasil penelitian menunjukkan bahwa pemaduan mikro dengan Bi tidak berpengaruh terhadap nilai kekerasan paduan Cu-29Zn, sedangkan pemaduan dengan Mn dan Al memberikan peningkatan kekerasan yang cukup signifikan. Pemaduan mikro dengan Bi cenderung meningkatkan kepadatan slip, twinning dan shear band, disisi lain pemaduan dengan Mn justru menurunkan kepadatan slip meskipun cenderung menaikkan kepadatan twinning dan juga shear band. Pemaduan mikro dengan Al pada kadar 5.7 berat membuat paduan Cu-29Zn semakin getas dan menurunkan sifat mampu bentuk. Selama proses anil, pemaduan dengan Bi meningkatkan laju rekristalisasi serta menghambat petumbuhan butir. Disisi lain, pemaduan dengan Mn cenderung menurunkan laju rekristalisasi dan juga proses pertumbuhan butir. Selama proses pengerolan dingin, pemaduan Mikro dengan Bi dan Mn cenderung mempercepat proses pembentukan tektur kuningan dan Goss. Disisi lain, selama proses anil, pemaduan mikro dengan Bi dan Mn cenderung menghasilkan tekstur yang lebih kompleks meliputi komponen tembaga, kuningan dan Goss.
ABSTRACT
Deformation characteristic and texture development on brass alloy are still under discussion, particularly concerning the critical deformation level of which change of deformation characteristic and transition from copper to brass type texture begins during cold rolling and annealing process. Previous research showed that the addition of alloying elements such as Bi, Mn, and Al on brass alloys resulted in grain refinement and altered mechanical properties of the alloys. However, the effects of those alloying elements on the deformation characteristic and texture development of brass alloys have not been investigated yet. In this research, microalloying process was conducted by adding pure Bi, Mn, and Al to Cu 29Zn alloys. The samples were manufactured by gravity casting. Bi addition was employed with variation of 0.5 and 1 wt. . On the other hand, both Mn and Al were added with variations of 2, 4, and 6 wt. . As cast samples were homogenized at 800 oC for 2 hours in a muffle furnace. The samples were then cold rolled with the level of deformation of 20, 40, and 70 . Subsequently, as rolled samples were annealed at 300, 400, 500, and 600 oC for 30 minutes. Final samples were characterized using chemical composition analysis, optical and scanning electron microscopy for microstructure observation, tensile and hardness testing, and texture measurement. The results showed that the addition of Bi did not affect the hardness of Cu 29Zn alloy. While on the contrary, Mn and Al addition resulted in significant increase on the alloy hardness. The addition of Bi tended to increase the slip, twin, and shear band density. In contrast, the addition of Mn resulted in decreasing slip density in spite of the increasing twin and shear band density of the alloy. Addition of 5.7 wt. Al reduced the formability of Cu 29Zn alloy by escalating its brittleness. During annealing process, Bi addition tended to increase the rate of recrystallization, while addition of Mn and Al showed contrary results. In the cold rolling process, the addition of Bi and Mn accelerated the development of brass and Goss texture components, and resulted in more complicated texture including copper, brass, and Goss components in the annealing process afterwards."
Lengkap +
2017
D2318
UI - Disertasi Membership  Universitas Indonesia Library