Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 8 dokumen yang sesuai dengan query
cover
Michelle Leticia Lawrence
Abstrak :
Suatu graf G = (V,E) terdiri dari himpunan simpul V dan himpunan busur E. Pelabelan-k busur f : E(G) ! {1, 2, ..., k}, k 2 Z+, sedemikian sehingga semua bobot simpul graf berbeda disebut pelabelan tak teratur. Bobot simpul u, dinotasikan dengan wf (u), merupakan jumlah seluruh label busur yang hadir pada simpul u dengan wf (u) = ⌃uv2E(G)f(uv). Kekuatan tak teratur yang dinotasikan dengan s(G) merupakan nilai minimum k sedemikian sehingga graf G memiliki pelabelan tak teratur dengan maksimum k label. Sedangkan, pelabelan-k busur f : E(G) ! {1, 2, .., k} dengan k 2 Z+ dikatakan pelabelan tak teratur modular graf G apabila terdapat fungsi bobot bijektif wf (u) : V (G) ! Zn dengan wf (u) = ⌃f(uv). Zn adalah grup bilangan bulat modulo n. Nilai minimum k agar graf G mempunyai pelabelan tak teratur modular dengan maksimum k label disebut kekuatan tak teratur modular, dinotasikan dengan ms(G). Graf middle dari graf lingkaran dinotasikan dengan M(Cn) dan dibangun dari sebuah graf lingkaran dengan tambahan simpul bertetangga. Penelitian ini menentukan konstruksi pelabelan tak teratur modular pada graf middle dari graf lingkaran dan menentukan kekuatan tak teratur modularnya. ......Let a graph G = (V,E) consists of vertex set V and edge set E. An edge klabeling f : E(G) ! {1, 2, ..., k}, k 2 Z+, such that every weights of the vertices are all different is called irregular labeling of a graph G. The weight of vertex u, denoted by wf (u), is the sum of all vertices adjacent to u, with wf (u) = P uv2E(G) f(uv). Irregularity strength denoted by s(G) is the minimum number k such that a graph G has irregular labeling with largest label k. Otherwise, an edge klabelling f : E(G) ! {1, 2, ..., k} with k 2 Z+ is called modular irregular labeling of a graph G if there exists a bijective weight function wf (u) : V (G) ! Zn with wf (u) = Pf(uv). Zn is a group of modulo n. The minimum number k such that a graph G has modular irregular labeling with largest label k is called modular irregularity strength of G, denoted by ms(G). Middle graph of cycle graphs is denoted by M(Cn) and is constructed by a cycle graph with additional adjacent vertices. This research constructs the modular irregular labeling for middle graph of cycle graphs and calculates the modular irregularity strength.
Jakarta: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanifah Sulasri
Abstrak :
Graf G terdiri atas himpunan simpul V(G) dan himpunan busur E(G). Graf G dengan V(G)={v_1,v_2,v_3,…,v_n} dan E(G)={v_1 v_2,v_2 v_3,…,v_(n-1) v_n} disebut sebagai graf lintasan yang dinotasikan sebagai P_n. Pelabelan graceful (disebut juga sebagai β-valuation) adalah pemetaan injektif dari himpunan simpul dari G ke himpunan bilangan bulat {0,1,…,|E(G)|} sedemikian sehingga jika untuk setiap busur 𝑢𝑣 diberikan label |𝑓(𝑢) − 𝑓(𝑣)|, label tersebut berbeda untuk setiap busurnya. Pelabelan antiajaib dari graf G adalah pemetaan bijektif dari himpunan busur E(G) ke himpunan bilangan bulat {1,…,|E(G)|} sedemikian sehingga bobot simpul (jumlahan dari label busur yang hadir pada simpul yang diberikan) berbeda untuk tiap simpulnya. Pada perkembangannya, terdapat variasi pada pelabelan antiajaib, salah satunya adalah pelabelan simpul antiajaib lokal. Pelabelan antiajaib lokal adalah pemetaan bijektif dari himpunan busur E(G) ke himpunan bilangan bulat {1,…,|E(G)|} dengan bobot simpul yang berbeda untuk tiap simpul yang bertetangga. Nilai minimum dari banyaknya bobot berbeda pada pelabelan simpul antiajaib lokal pada graf G disebut sebagai bilangan kromatik dan dinotasikan sebagai χ_la (G). Untuk kelas graf lintasan, nilai χ_la (P_n )=3. Varian lain dari pelabelan antiajaib ialah pelabelan antiajaib yang diinduksi oleh pelabelan graceful. Pelabelan ini disebut sebagai pelabelan antiajaib graceful. Pelabelan-pelabelan yang telah disebutkan memberikan ide untuk konsep pelabelan antiajaib lokal graceful, yaitu pelabelan antiajaib graceful yang memiliki bobot simpul berbeda untuk tiap simpul yang bertetangga. Penelitian ini akan membahas pelabelan antiajaib lokal graceful untuk graf lintasan P_n. Kemudian, akan ditunjukkan pula bilangan kromatik χ_gla (P_n). ......The graph G consists of a set of vertices V(G) and a set of edges E(G). A graph G with V(G)={v_1,v_2,v_3,…,v_n} and E(G)={v_1 v_2,v_2 v_3,…,v_(n-1) v_n} is called a path graph and denoted as P_n . The graceful labeling (also known as β-valuation) is an injective mapping of the set of vertices from G to the set of integers {0,1,…,|E(G)|} such that if for each edge uv is assigned a label |f(u) - f (v)|, the label is different for each edge. The antimagic labeling of a graph G is a bijective mapping from the set of edges E(G) to the set of integers {1,…,|E(G)|} such that the vertex weights (sum of the edge labels incident at a given vertex) are different for each vertex. In its development, there are variations on antimagic labeling, one of which is local antimagic vertex labeling. Local antimagic labeling is is a bijective mapping from the set of edges E(G) to the set of integers {1,…,|E(G)|} with a different node weight for each neighboring vertex. The minimum value of the number of different weights in the local antimagic vertex labeling on a graph G is called the chromatic number and is denoted as χ_la (G). For path graph, the value of χ_la (P_n)=3. Another variant of antimagic labeling is an antimagic labeling which is induced by graceful labeling. This labeling is called graceful antimagic labeling. These labelings lead to the idea for the concept of graceful local antimagic labeling, namely graceful antimagic labeling that has different weight for each neighboring vertex. This research will discuss about graceful local antimagic labeling on path graphs P_n. It will also be shown the chromatic number χ_gla (P_n).

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Wardhani
Abstrak :
Misalkan G=(V,E) adalah suatu graf sederhana dengan himpunan simpul tak kosong V dan himpunan busur E. Pewarnaan simpul pada graf G adalah pemberian warna untuk setiap simpul di G dengan satu warna dan setiap dua simpul yang bertetangga memiliki warna yang berbeda... ......Let G=(V,E) be a simple graph with non-empty set of vertices V and set of edges E. Vertex coloring on a graph G is an assignment color for each vertex of G, one vertex by one color and two adjacent vertices has different color...
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Wardhani
Abstrak :

Misalkan 𝐺 = (𝑉, 𝐸) adalah suatu graf sederhana dengan himpunan simpul tak kosong 𝑉 dan himpunan busur 𝐸. Pewarnaan simpul pada graf 𝐺 adalah pemberian warna untuk setiap simpul di 𝐺 dengan satu warna dan setiap dua simpul yang bertetangga memiliki warna yang berbeda. Misalkan pada graf 𝐺 didefinisikan fungsi bijeksi 𝑓: 𝐸 → {1, 2, … , |𝐸|} dengan |𝐸| adalah banyaknya busur. Untuk setiap simpul 𝑣 ∈ 𝑉, bobot simpul 𝑣 adalah 𝑤(𝑣) = ∑𝑒∈𝐸(𝑣) 𝑓(𝑒), dengan 𝐸(𝑣) merupakan himpunan busur yang hadir pada 𝑣. Graf 𝐺 dikatakan graf antiajaib lokal apabila dapat dilakukan pelabelan antiajaib lokal sehingga untuk semua busur 𝑣𝑢 ∈ 𝐸, berlaku 𝑤(𝑣) ≠ 𝑤(𝑢). Dalam hal ini fungsi 𝑓 disebut pelabelan antiajaib lokal pada 𝐺. Bobot simpul berbeda yang dihasilkan dari pelabelan 𝑓 dapat dikatakan sebagai warna simpul yang berbeda. Minimum dari banyaknya warna yang terpakai pada pewarnaan antiajaib lokal di graf 𝐺 disebut bilangan kromatik antiajaib lokal dari 𝐺, 𝜒𝑙𝑎(𝐺). Pada penelitian ini dibahas mengenai pewarnaan simpul antiajaib lokal pada graf sapu ganda 𝐷𝐵𝑛,𝑚 dengan 𝑛 ≥ 4 dan 𝑚 ≥ 2. Graf sapu ganda 𝐷𝐵𝑛,𝑚 didapat dari lintasan 𝑃𝑛 dengan 𝑛 simpul dan dua bintang 𝑆𝑚 dengan 𝑚 + 1 simpul yang kedua simpul daun 𝑃𝑛 merupakan simpul pusat dari masing-masing 𝑆𝑚. Diperoleh bilangan kromatik simpul antiajaib lokal dari graf sapu ganda 𝜒𝑙𝑎(𝐷𝐵𝑛,𝑚) = 2𝑚 + 1.


Let 𝐺 = (𝑉, 𝐸) be a simple graph with non-empty set of vertices 𝑉 and set of edges 𝐸. Vertex coloring on a graph 𝐺 is an assignment color for each vertex of 𝐺, one vertex by one color and two adjacent vertices has different color. Suppose in graph 𝐺 is defined a bijective function 𝑓: 𝐸 → {1, 2, … , |𝐸|} where |𝐸| is number of edges. For every vertex 𝑣 ∈ 𝑉, the weight of vertex 𝑣 is 𝑤(𝑣) = ∑𝑒∈𝐸(𝑣) 𝑓(𝑒),where 𝐸(𝑣) is a set of edges incident to vertex 𝑣. The graph 𝐺 is called as local antimagic if local antimagic labeling could be done so that for all edges 𝑣𝑢 ∈ 𝐸 satisfy 𝑤(𝑣) ≠ 𝑤(𝑢). In this case, function 𝑓 is called local antimagic labeling in 𝐺. A different weight of vertex that produced by the labeling can be seen as a different color of vertex in 𝐺. The minimum number of colors that be used by the local antimagic coloring is called local antimagic chromatic number of 𝐺, 𝜒𝑙𝑎(𝐺). This thesis examines the local antimagic coloring of double broom graph 𝐷𝐵 𝑛,𝑚 with 𝑛 ≥ 4 and 𝑚 ≥ 2. A double broom graph 𝐷𝐵𝑛,𝑚 is obtained from path 𝑃𝑛 with 𝑛 vertices and two stars 𝑆 𝑚 with 𝑚 + 1 vertices where both pendant vertices of 𝑃𝑛 are the center vertices of both 𝑆 𝑚. The vertex antimagic local chromatic number of double broom graph 𝜒𝑙𝑎(𝐷𝐵𝑛,𝑚) = 2𝑚 + 1.

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nisrina Ayu Labibah
Abstrak :
Graf G=(V,E) merupakan pasangan terurut dari himpunan V dan E, di mana V adalah himpunan simpul di G dan E adalah himpunan busur di G. Lintasan u-v antara dua simpul u dan v di G adalah barisan simpul dan busur yang berawal di u dan berakhir di v tanpa adanya pengulangan simpul. Jarak antara simpul u dan v adalah panjang terkecil dari semua lintasan u-v di G. Geodesik u-v adalah lintasan u-v dengan panjang sama dengan jarak u dan v. Misalkan diberikan pewarnaan pada busur-busur graf. Lintasan pelangi adalah lintasan di mana warna semua busurnya berbeda. Geodesik pelangi adalah geodesik tanpa pengulangan warna busur. Pewarnaan pelangi kuat lokal-d merupakan pewarnaan semua busur di G di mana setiap pasangan simpul dengan jarak sampai d terhubung oleh geodesik pelangi. Bilangan keterhubungan pelangi kuat lokal-d pada graf G, dinotasikan dengan lsrc_d (G), adalah bilangan terkecil banyak warna yang digunakan dalam pewarnaan pelangi kuat lokal-d. Graf bintang dengan m+1 simpul adalah graf dengan satu simpul berderajat m dan m simpul berderajat 1. Graf lintasan adalah graf dengan n simpul yang membentuk himpunan busur {u_i u_(i+1)|i=1,2,...,n-1}. Graf stacked book merupakan hasil kali Kartesius antara graf bintang dan graf lintasan. Pada penelitian ini, dicari bilangan keterhubungan pelangi kuat lokal pada graf stacked book untuk d=2 dan d=3. ......A graph G=(V,E) is an ordered pair of sets V and E, where V is the set of vertices in G and E is the set of edges in G. The u-v path between two vertices u and v in G is a sequence of vertices and edges that starts at u and ends at v without any vertex repetition. The distance between vertices u and v is the minimum length of all u-v paths in G. The u-v geodesic is a u-v path with the length equal to the distance. Suppose all edges of graph is colored. A rainbow path is a path in which the colors of all its edges are different. A rainbow geodesic is a geodesic with no repeating edge colors. A d-local strong rainbow coloring is the coloring of all edges in G where every pair of vertices with a distance of up to d is connected by a rainbow geodesic. The d-local strong rainbow connection number of graph G, denoted by lsrc_d (G), is the smallest number of colors used in the d-local strong rainbow coloring. A star graph with m+1 vertices is a graph with a vertex of degree m and m vertices of degree 1. A path graph is a graph with n vertices and set of edges {u_i u_(i+1)|i=1,2,...,n-1}. A stacked book graph is the Cartesian product between the star graph and the path graph. In this research, we give the local strong rainbow connection number of stacked book graphs for d=2 and d=3.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Alchem Nuravian Permana
Abstrak :
Graf adalah suatu pasangan himpunan dan, dengan adalah himpunan simpul dan  adalah himpunan busur yang menghubungkan dua simpul. Jarak dari dua simpul dan  adalah panjang terpendek dari lintasan, dinotasikan dengan. Suatu lintasan  dengan panjang disebut geodesik. Pasangan simpul dengan jarak terbesar pada suatu graf terhubung disebut diameter. Misalkan adalah pewarnaan pada busur graf terhubung. Jarak antara dua simpul pada  di mana tidak terdapat pengulangan warna busur disebut geodesik pelangi. Graf  disebut terhubung pelangi kuat jika terdapat pewarnaan busur sehingga terhubung geodesik pelangi untuk setiap pasang simpul pada. Pewarnaan disebut sebagai pewarnaan pelangi kuat. Banyaknya warna minimum sehingga didapat pewarnaan sehingga terhubung pelangi kuat disebut bilangan keterhubungan pelangi kuat dari, yang dinotasikan dengan. Misalkan  suatu bilangan bulat positif, didefinisikan pewarnaan pelangi kuat lokal sebagai pewarnaan busur sedemikian sehingga setiap pasang simpul dengan jarak paling besar terhubung dengan geodesik pelangi. Bilangan keterhubungan pelangi kuat lokal, yang dinotasikan dengan, adalah banyak warna minimum pada pewarnaan tersebut. Hasil operasi korona dari dua graf dan dengan banyak simpul masing-masing dan, diperoleh dengan mengambil satu salinan dari graf dan salinan dari graf, dan menambahkan busur pada setiap simpul di salinan ke-dari graf  dengan simpul ke- dari graf. Pada penelitian ini, diberikan bilangan keterhubungan pelangi kuat lokal graf hasil operasi korona antara graf lengkap dengan satu simpul dengan graf roda dan graf hasil operasi korona antara dua graf roda. ......A graph  is a pair of sets  and, where  is the set of vertices and is the set of edges that connect two vertices. The distance between two vertices and is the smallest length of a  path, denoted by. A path of length  is called geodesic. A diameter of is the greatest distance between any two vertices in a connected graph. Let  be a rainbow coloring of connected graph. The shortest path in which doesn’t contain edge color repetition is called rainbow geodesic. Graph is said to be strongly rainbow connected if it contains the coloring such that is connected by rainbow geodesic for every pair of vertices. The coloring is called strong rainbow coloring. The minimum color for which there exists a coloring such that is strongly rainbow connected is called strong rainbow connection number of, denoted by. Let be a positive integer, we define-local strong rainbow coloring such that every pair of vertices of distance up to connected by rainbow geodesic. We define-local strong rainbow connection number, denoted by, as the minimum color in the coloring. The corona product of two graphs  and  of degree and, respectively, is obtained by taking a copy of graph and copies of graph, and joining the vertex of to every vertex of the copy of. In this research, we will find-local strong rainbow connection number of corona product of complete graph with one vertex and wheel graph and corona product of two wheel graphs.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Rayhan
Abstrak :
Misalkan graf dengan merupakan himpunan tak kosong simpul dan merupakan himpunan busur. Didefinisikan pewarnaan busur dari graf dimana busur yang bertetangga dapat memiliki warna yang sama. Untuk sembarang pasangan simpul berbeda, lintasan pelangi adalah lintasan yang semua warna busur pada lintasan tersebut berbeda. Lintasan terpendek dari sembarang dua simpul di yang di dalamnya tidak terdapat pengulangan warna disebut sebagai geodesik pelangi. Panjang lintasan terpendek merupakan jarak antara sembarang dua simpul. Pewarnaan pelangi dengan suatu geodesik pelangi untuk setiap pasang simpul berjarak maksimum disebut pewarnaan pelangi kuat lokal-. Banyak -warna minimum yang dibutuhkan untuk membentuk pewarnaan pelangi kuat lokal-pada graf disebut bilangan keterhubungan pelangi kuat lokal- pada graf . Graf hasil operasi korona didefinisikan sebagai graf yang terbentuk dari satu graf dan salinan graf , dimana untuk tiap simpul ke- di dihubungkan dengan tiap simpul dari salinan ke- graf . Penelitian ini bertujuan untuk mencari bilangan keterhubungan pelangi kuat lokal graf bipartit lengkap serta graf hasil operasi koronanya dengan komplemen graf lengkap. Graf bipartit lengkap adalah graf yang himpunan simpulnya dapat dipartisi menjadi dua sub-himpunan , sehingga setiap busur di menghubungkan simpul di dan simpul di dan setiap simpul di bertetangga dengan setiap simpul di dan graf lengkap adalah graf yang setiap pasang simpulnya bertetangga. ......Let be graph where is a non-empty set of vertices and is set of edge. Define an edge coloring , of , where adjacent edges may be have the same color. For any distinct vertices , a rainbow path is a path whose edge color on that path are all distinct. The shortest path from any two vertices in where there are no repeating colors is called a rainbow geodesic. The smallest length of path is a distance between for any vertices and denoted by . A rainbow coloring such that any two vertices with a distance at most with a rainbow geodesic is called -local strong rainbow coloring. Minimum number of -colors required for a -local strong rainbow coloring in is called local strong rainbow connection number-, it can be written as . The corona product is define as a graph that form by taking one grah and copies of graph , where for every -th vertex of is connected to each vertex of the -th copy of . This study aims to find local strong rainbow connection number of complete bipartite graph and it’s corona product with a complement complete graph. Complete bipartite graph is a gaph that the set of vertices can be partitioned into two subset and , such that for every edge in connects the vertices in and vertices in and for every vertices in adjacent with every vertices in and complete graph is a graph that every vertices in that graph is adjacent.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Shiqo Filla
Abstrak :
Kalkulus fraksional adalah topik yang secara khusus membahas tentang integral dan turunan fraksional, yakni integral dan turunan berorde bilangan real positif. Kalkulus fraksional telah diterapkan dalam berbagai bidang pemodelan, salah satunya pada model sistem dinamik yang bersifat chaos. Chaos merupakan kondisi saat solusi dari suatu sistem deterministik terus bergerak secara aperiodik, namun terbatas dan bersifat sensitif terhadap perubahan nilai awal. Sistem chaos umumnya dikenal dibangun oleh sistem persamaan diferensial berorde integer, namun berbagai penelitian telah menunjukkan bahwa chaos juga dapat terjadi pada sistem dengan turunan berorde fraksional. Pada skripsi ini dibahas chaos pada sistem Burke-Shaw fraksional berorde sama. Pada model sistem Burke-Shaw fraksional, diperoleh hasil bahwa chaos terjadi saat orde turunan fraksional alpha > alpha*, dengan alpha* suatu konstan. Fenomena chaos pada sistem Burke-Shaw fraksional untuk berbagai orde turunan fraksional alpha diselidiki dengan mengamati potret fase dari solusi sistem dan nilai eksponen Lyapunov yang diperoleh secara numerik. Dari simulasi yang dilakukan untuk beberapa orde turunan fraksional yang berbeda, didapat hasil yang konsisten bahwa sistem bersifat stabil untuk alpha < alpha*, dan bersifat chaos saat alpha > alpha*. Dinamik dari solusi sistem juga diamati untuk melihat sensitivitas solusi terhadap perbedaan nilai awal yang kecil. ......Fractional calculus is a topic that specifically discussed about fractional integral and fractional derivative, which means integral and derivative with order of positive real number. Fractional calculus has been applied to various fields of mathematical modelling, one of them is in the model of chaotic dynamical system. Chaos is a condition where the solution of a deterministic system keep moving in aperiodic state, but is bounded and sensitive with the change of initial conditions. Generally a chaotic system is built by differential equations with integer order, but various work has showed that chaos can be exhibited in system with fractional order. In this thesis chaotic behavior of Burke-Shaw commensurate order fractional system is discussed. From the fractional Burke-Shaw system we obtained the result that chaos will happen when the fractional derivative order alpha > alpha*, where alpha* is a constant. Chaotic phenomena of fractional Burke-Shaw system with various fractional derivative order alpha is investigated by observing the potrait phase of system's solution and Lyapunov exponents by some numerical calculations. By simulation that is done with some different values of fractional order alpha of the derivative, we obtained consistent result that shows the system is stable for alpha < alpha* and is chaotic for alpha > alpha*. The dynamic of the system's solutions is also observed to see the solution's sensitivity with small difference of initial conditions.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library