Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Samuel Christian Giovanni
Abstrak :
[ABSTRAK Pada aplikasinya, konstruksi jalan masih memiliki banyak kelemahan antara lain mudah rusak pada saat terdapat genangan air sehingga akan memperpendek umur pakai jalan. Pada penelitian ini akan dilakukan modifikasi dari bitumen yang merupakan bahan utama pembuatan jalan dengan cara penambahan High Density Polyehtylene (HDPE) dan liginin pada campuran bitumen pen 60/70. Hal ini dapat menurunkan nilai penetrasi sehingga menjadikan bitumen lebih keras dan tahan ketika diberikan beban kendaraan yang berulang, meningkatkan titik lembek, dan menurunkan daktilitas. Selain itu, penambahan lignin sebagai coupling agent dapat meningkatkan kompaktibilitas antara HDPE dengan bitumen karena lignin yang memiliki gugus polar dan non-polar. Kadar lignin yang digunakan yaitu 0,1%, 0,3%, dan 0,5%. Selain itu, penelitian ini juga ingin mengetahui pengaruh temperatur proses yaitu 140˚C, 160˚C dan 180˚C dan waktu pencampuran yaitu 15, 30, dan 45 menit terhadap sifat bitumen hasil modifikasi. Untuk itu dilakukan pengujian mekanik dan karakterisasi campuran untuk melihat kekuatan dari bitumen dan kompatibilitas antara bitumen, HDPE, dan lignin. Pengujian dilakukan melalui uji daktilitas, penetrasi, dan titik lembek. Sedangkan, karakterisasi dilakukan dengan menggunakan Fourier Transform Infrared (FTIR), Thermo Gravimetric Analyzer (TGA), dan Differential Scaning Calorimetry (DSC). Dari hasil pengujian menunjukkan semakin tinggi kadar dari liginin dan semakin tinggi temperatur proses yang digunakan maka semakin tinggi juga kekuatan bitumen modifikasi dalam menahan beban serta semakin tinggi ketahanan termalnya. Kompatibilitas yang baik didapat pada penambahan lignin 0,5% dan temperatur proses 180&#deg;C.
ABSTRACT In the application, road construction still has some weakness such as easily damaged, especially when wet patch of water exists. In this case, it will shorten the lifespan of the road. In this study, therefore, the main purpose is to modify the bitumen, which is the main ingredient of asphalt for road construction. The work was performed by adding high density polyethylene (HDPE) and lignin into the bitumen mix pen 60/70. It was expected that it could decrease the penetration?s value so it will make the asphalt harder and resistant to the load, increase the softening point, and thus lower the ductility. The addition of lignin was expected to function as a coupling agent and could increase the compatibility between HDPE and bitumen. This can be understood since lignin has a polar and a non-polar groups. Concentration of lignin used was 0.1, 0.3, and 0.5 wt.% at processing temperature of 140oC, 160oC and 180oC and mixing times of 15, 30, and 45 minutes. Characterization was performed by using a Fourier Transform Infrared (FTIR), Thermogravimetric Analyzer (TGA), and Differential Scanning Calorimetry (DSC), whereas the mechanical testing of the modified bitumen was performed through ductility testing, penetration, and softening point. The results showed that high level of lignin and high temperature of the process resulted in high strength of the modified bitumen and so does the thermal resistance. The best result was obtained in the addition of 0.5 wt.% lignin at a process temperature of 180°C.;In the application, road construction still has some weakness such as easily damaged, especially when wet patch of water exists. In this case, it will shorten the lifespan of the road. In this study, therefore, the main purpose is to modify the bitumen, which is the main ingredient of asphalt for road construction. The work was performed by adding high density polyethylene (HDPE) and lignin into the bitumen mix pen 60/70. It was expected that it could decrease the penetration?s value so it will make the asphalt harder and resistant to the load, increase the softening point, and thus lower the ductility. The addition of lignin was expected to function as a coupling agent and could increase the compatibility between HDPE and bitumen. This can be understood since lignin has a polar and a non-polar groups. Concentration of lignin used was 0.1, 0.3, and 0.5 wt.% at processing temperature of 140oC, 160oC and 180oC and mixing times of 15, 30, and 45 minutes. Characterization was performed by using a Fourier Transform Infrared (FTIR), Thermogravimetric Analyzer (TGA), and Differential Scanning Calorimetry (DSC), whereas the mechanical testing of the modified bitumen was performed through ductility testing, penetration, and softening point. The results showed that high level of lignin and high temperature of the process resulted in high strength of the modified bitumen and so does the thermal resistance. The best result was obtained in the addition of 0.5 wt.% lignin at a process temperature of 180oC., In the application, road construction still has some weakness such as easily damaged, especially when wet patch of water exists. In this case, it will shorten the lifespan of the road. In this study, therefore, the main purpose is to modify the bitumen, which is the main ingredient of asphalt for road construction. The work was performed by adding high density polyethylene (HDPE) and lignin into the bitumen mix pen 60/70. It was expected that it could decrease the penetration’s value so it will make the asphalt harder and resistant to the load, increase the softening point, and thus lower the ductility. The addition of lignin was expected to function as a coupling agent and could increase the compatibility between HDPE and bitumen. This can be understood since lignin has a polar and a non-polar groups. Concentration of lignin used was 0.1, 0.3, and 0.5 wt.% at processing temperature of 140oC, 160oC and 180oC and mixing times of 15, 30, and 45 minutes. Characterization was performed by using a Fourier Transform Infrared (FTIR), Thermogravimetric Analyzer (TGA), and Differential Scanning Calorimetry (DSC), whereas the mechanical testing of the modified bitumen was performed through ductility testing, penetration, and softening point. The results showed that high level of lignin and high temperature of the process resulted in high strength of the modified bitumen and so does the thermal resistance. The best result was obtained in the addition of 0.5 wt.% lignin at a process temperature of 180oC.]
Depok: Fakultas Teknik Universitas Indonesia, 2016
S61894
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andreas Sugiarto
Abstrak :
Fluida yang terdispersi partikel grafena banyak diteliti karena grafena memiliki konduktivitas termal yang sangat tinggi (±5000 W/mK). Namun grafena memiliki kelemahan berupa sintesisnya yang sulit dan buruknya tingkat dispersitas dalam air. Oleh karena itu, pada penelitian ini digunakan partikel reduced Graphene Oxide (rGO) yang memiliki struktur seperti grafena, tetapi tingkat dispersinya lebih baik dan sintesisnya tidak sesulit grafena. Dalam fluida juga ditambahkan surfaktan Sodium Dodecyl Benzene Sulfonate (SDBS) dan Polyethylene Glycol (PEG), untuk meningkatkan tingkat kestabilan rGO, sehingga peristiwa aglomerasi dapat dihindari. Proses sintesis rGO dimulai dari oksidasi grafit menjadi Graphene Oxide (GO) menggunakan metode Hummers termodifikasi. Lalu GO direduksi menjadi rGO menggunakan reduktor kimia hidrazine. Setelah itu, partikel dikarakterisasi menggunakan Energy Dispersive Spectroscopy (EDS), Scanning Electron Microscope (SEM), dan X-Ray Diffraction (XRD), untuk memastikan struktur rGO berhasil didapatkan. Kemudian partikel rGO dengan variabel konsentrasi 0.01, 0.03, 0.05% Wt, serta surfaktan SDBS dan PEG sebanyak 10% Wt didispersikan dalam 100 ml akuades menggunakan proses ultrasonifikasi selama 3 jam. Fluida terdispersi partikel mikro rGO kemudian dikarakterisasi dengan pengujian Particle Size Analyzer (PSA) dan Potensial Zeta untuk mengetahui distribusi ukuran dan tingkat kestabilannya. Nilai konduktivitas termal fluida terdispersi partikel mikro rGO dihipotesis melalui perbandingan berbagai literatur dan analisis pengujian yang telah dilakukan. Hasilnya, penambahan rGO dengan konsentrasi 0.01, 0.03, dan 0.05% Wt akan menghasilkan fluida dengan stabilitas yang cukup baik, karena adanya gugus oksigen yang tersisa pada rGO. Komposisi penambahan optimum untuk meningkatkan nilai konduktivitas termalnya adalah 0.05% Wt. Penambahan surfaktan sebanyak 10% Wt meningkatkan stabilitas fluida, dibuktikan melalui meningkatnya nilai potensial zeta. Walaupun penambahan PEG menurunkan potensial zeta, stabilitas fluida meningkat melalui fenomena steric hinderance. Penambahan surfaktan sebanyak 10% Wt akan menurunkan konduktivitas termal fluida karena meningkatkan viskositas dan resistansi termalnya, serta surfaktan sendiri memiliki konduktivitas termal yang buruk. Dibandingkan surfaktan jenis non-ionik, surfaktan jenis anionik seperti SDBS lebih cocok untuk mendispersikan rGO dan dapat meningkatkan konduktivitas termal fluida pada komposisi penambahan yang tepat. ......Fluids that were dispersed by graphene particles have been widely studied since graphene has very high thermal conductivity (5000 W/mK). However, graphene has disadvantages such as its difficulty to be synthesized and has poor level of dispersity in the water. Therefore, in this study, the use of reduced Graphene Oxide (rGO) particles will be explored. rGO has similar structure as graphene, but it has better dispersity in water and its method of synthesis is not as difficult as graphene. Furthermore, the addition of Sodium Dodecyl Benzene Sulfonate (SDBS) and Polyethylene Glycol (PEG) will be studied, to further increase the stability of rGO in water, so that the agglomeration can be avoided. Graphite was oxidized into Graphene Oxide (GO) using modified Hummers method. Then GO was reduced to rGO using hydrazine as the reducing agent. After that, rGO particles were characterized using Energy Dispersive Spectroscopy (EDS), Scanning Electron Microscope (SEM), and X-Ray Diffraction (XRD), to ensure the structure of rGO was obtained. Afterwards, rGO particles with concentration variable of 0.01, 0.03, 0.05% Wt and 10% Wt of SDBS or PEG were dispersed in 100 ml of distilled water, using ultrasonication process for 3 hours. rGO-dispersed Fluids then characterized using Particle Size Analyzer (PSA) and Zeta Potential measurement to determine its size distribution and rGO stability in water. The value of rGO-dispersed fluids thermal conductivity will be hypothesized through the comparison of various literature. As a result, the addition of 0.01, 0.03, and 0.05 %Wt rGO would produce fluids with good stability, due to the presence of oxygen functional groups that remain in the rGO structure. The optimum concentration of rGO to enhance the value of fluids thermal conductivity is 0.05 %Wt. The addition of surfactants as much as 10 %Wt increase the stability of rGO-dispersed fluids, which showed through the increased value of zeta potential. Although the addition of PEG decreased zeta potential, the rGO-dispersed fluids stability was increased through the phenomenon of steric hinderance. The addition of surfactants as much as 10 %Wt will decrease the rGO-dispersed fluids thermal conductivity, since it increases the viscosity and thermal resistance, as well as the surfactant itself has poor thermal conductivity. Compared with non-ionic type surfactant, anionic type surfactants, especially SDBS, is more suitable for dispersing rGO in water. However, it could only improve rGO-dispersed fluids thermal conductivity if the addition of surfactants is optimum and appropriate.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faisal Aldy
Abstrak :
Li4Ti5O12 lithium titanate disintesis menggunakan metode sol-gel dan hidrotermal dengan memakai sumber ion lithium LiOH. Anoda komposit Li4Ti5O12/Sn dipreparasi menggunakan metode ball mill dengan 3 variasi Sn. XRD menunjukkan fasa spinel, TiO2, dan Sn. SEM memperlihatkan bahwa partikel Li4Ti5O12 memiliki ukuran berkisar 20-50 ?m dan ukuran partikel Sn berkisar 2-70 ?m. Nilai hambatan elektrolit terendah didapatkan pada kadar Sn terbesar. Peningkatan kadar Sn dapat meningkatkan kapasitas spesifik dari baterai pada uji CV. Reaksi alloying dan dealloying LixSn mengakomodasi peningkatan kapasitas spesifik pada C/D. Namun, volume ekspansi dari LixSn menyebabkan hilangnya kapasitas saat C rate meningkat. Kapasitas terbesar pada laju charge/discharge rendah dan tinggi didapatkan pada kadar Sn terbesar. ...... Li4Ti5O12 lithium titanate were synthesized by sol gel and hydrothermal method with LiOH as lithium ion source. Li4Ti5O12 Sn composites anode were preparared by ball mill method with three of Sn variation. XRD shows spinel, TiO2, and Sn phases. SEM shows that Li4Ti5O12 particles are around 20 50 m size and Sn particles are around 2 70 m size. The lowest electrolyte resistance obtained at the highest Sn value. With the increasing Sn value, the specific capacity of battery can be increased from CV. Alloying and dealloying reaction of LixSn accomodate the increased specific capacity from C D. However, volume expansion from LixSn leads to loss of capacity when the C rate increases. The capacity at low and high charge discharge rate obtained at the highest Sn value.
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66450
UI - Skripsi Membership  Universitas Indonesia Library