Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Muhammad Fadhurrahman
Abstrak :
Awalnya, pemetaan lahan gambut dilakukan dengan pengamatan langsung sifat-sifat tanah pada jarak tertentu. Namun saat ini sudah banyak dikembangkan pemetaan jarak jauh menggunakan citra satelit dengan data pendukung lainnya. Selain keunggulannya karena mudah diakses dan memiliki jangkauan yang luas, citra satelit juga memungkinkan interpretasi karakteristik menggunakan metode artificial intelligence (AI). Penelitian yang akan dilakukan adalah melakukan pengembangan terhadap algoritma pengkarakteristik citra satelit sehingga didapatkan hasil yang lebih optimal. Arsitektur Hybrid Residual U-Netdigunakan sebagai algoritma untuk mengklasifikasikan kedalaman lahan gambut. Data yang digunakan berupa citra satelit MODIS yang diakusisi dalam rentang waktu 5 tahun pada tahun 2015 sampai 2019 dan data kedalaman lahan gambut dari Balai Besar Sumberdaya Lahan Pertanian (BBSDLP) dengan 7 kelas kedalaman gambut pada daerah Pulang Pisau Kalimantan Tengah. Citra satelit MODIS diolah menjadi sebuah indeks vegetasi. Citra indeks vegetasi yang digunakan pada penelitian ini sejumlah 9 citra indeks vegetasi. Citra indeks vegetasi dan data kedalaman gambut kemudian dilakukan ekstraksi fitur untuk pembuatan dataset model machine learning menggunakan metode grid dan centeroids. Untuk pembuatan dataset model Hybrid Residual U-Net dilakukan pemotongan region of interest (ROI) pada citra indeks vegetasi dan kedalaman gambut. Pada tahap pelatihan model Hybrid Residual U-Net memiliki nilai akurasi sebesar 99,99% dan pada proses pengujian memiliki nilai akurasi sebesar 96,46%. ......Initially, peatland mapping was carried out by direct observation of soil properties at a certain distance. However, many remote sensing for digital mapping has been developed using satellite imagery with other supporting data. In addition to the advantages of being easily accessible and having a wide range, satellite imagery also allows the interpretation of characteristics using artificial intelligence (AI). The research that will be carried out is to develop an algorithm for characterizing satellite imagery so that more optimal results are obtained. Hybrid Residual U-Net was used as an algorithm to classify the depth of peatlands. The data used are MODIS satellite imagery which was acquired over a period of 5 years from 2015 to 2019 and peatland depth data from the Center for Agricultural Land Resources (BBSDLP) with 7 peat depth classes in Pulang Pisau, Central Borneo. MODIS satellite imagery is processed into a vegetation index. The vegetation index images and peat depth data were then performed for feature extraction to create a machine learning model dataset using the grid and centroids methods. To generate the CNN model’s dataset, the region of interest (ROI) was cut on the vegetation index and peat depth images. The model will process the dataset so that the accuracy value is obtained then a comparison is done between the accuracy values ​​so that the best model is obtained. At the training stage, the Hybrid Residual U-Net model has an accuracy value of 99.99% and in the testing process, it has an accuracy value of 96,46%.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Arif Rachman Hakim
Abstrak :
Analisis kualitas data stasiun pengamatan gempabumi menjadi sangat penting sebagai kontrol kualitas atau pengendali mutu. Saat ini penentuan kualitas stasiun pengamatan gempabumi dilakukan secara manual dengan menganalisis parameter bentuk spektrum noise atau bentuk spektrum power spectral density (PSD) terhadap bentuk noise model pada suatu stasiun dengan rentang waktu 30 hari oleh seorang pakar. Pada penelitian ini diusulkan pendekatan metode baru berbasis deep learning untuk mengenali kualitas stasiun pengamatan gempabumi, yang didasarkan dari kemampuan pakar dalam menganalisis kualitas data stasiun pengamatan gempabumi. Data yang digunakan ialah waveform rekaman seismometer 3 komponen (North-South, East-West, Z-vertical) pada jaringan stasiun pengamatan gempabumi Indonesia Tsunami Early Warning System (InaTEWS). Model arsitektur dalam rancang bangun sistem pakar ini menggunakan Multiple Input Convolutional Neural Network (MICNN), dalam model MICNN ini terdapat 3 blok Convolutional Neural Network, yang berfungsi sebagai ekstraksi fitur tiap komponen waveform rekaman seismometer, hasil ekstraksi fitur tiap blok CNN kemudian digabungkan untuk dilakukan proses klasifikasi pada model arsitektur MICNN. Terdapat 3 kelas klasifikasi yang digunakan pada penelitian ini, yaitu Classified, Usable dan Unusable. Pengujian terhadap model MICNN ini menggunakan rekaman waveform seismometer dari 411 stasiun InaTEWS dengan panjang rekaman 30 hari selama 12 bulan, dan hasil pengujian model MICNN pada penelitian ini memiliki akurasi sebesar 99,4% ......Analysis of the quality of the earthquake observation station data becomes very important as quality control. Currently, the determination of the quality of earthquake observation stations is done manually by analyzing the parameters of the shape of the noise spectrum or the form of the power spectral density (PSD) spectrum against the shape of the noise model at a station with a period of 30 days by an expert. This study proposes a new method approach based on deep learning to identify the quality of earthquake observation stations, which is based on the ability of experts to analyze the quality of earthquake observation station data. The data is a 3-component seismometer recording waveform (North-South, East-West, Z-vertical) on the Indonesian Tsunami Early Warning System (InaTEWS) earthquake observation station network. The architectural model in the design of this expert system uses Multiple Input Convolutional Neural Network (MICNN). In this MICNN model, 3 Convolutional Neural Network blocks function as feature extraction for each component of the seismometer recording waveform. Classification process on the MICNN architectural model. There are three classification classes used in this study, namely Classified, Usable and Unusable. The test of the MICNN model uses waveform seismometer recordings from 411 InaTEWS stations with a recording length of 30 days for 12 months, and the results of testing the MICNN model in this study have an accuracy of 99,4%.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library