Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 10 dokumen yang sesuai dengan query
cover
Ilham Aulia Malik
"[ABSTRAK
Aplikasi Fajr merupakan aplikasi mobile yang memiliki konten islami dengan
fitur utama yaitu Fajr Cards. Namun, Fajr Cards belum mampu menarik
perhatian pengguna dengan minimnya jumlah pengguna fitur ini. Fajr Cards
sebagai fitur yang berbasiskan kepada konten dapat ditingkatkan dengan
memberikan konten yang relevan dengan pengguna. Twitter sebagai media sosial
memiliki data real-time dan jumlah yang banyak sehingga dapat menjadi sumber
data aktual untuk dianalisa. Data Twitter dapat dianalisa dengan menggunakan
text mining. Salah satunya yaitu text classification atau klasifikasi teks Tujuan
penelitian ini adalah untuk menentukan metode klasifikasi apa yang terbaik untuk klasifikasi tema konten Fajr Cards. Metodologi yang digunakan menggunakan tahapan preprocess Text Mining dan
penggunaan metode Text Mining yaitu Text Classification. Hasil yang diharapkan adalah gambaran bagaimana data Twitter diproses untuk proses klasifikasi dan metode klasifikasi apa yang terbaik untuk klasifikasi tema konten Fajr Cards.

ABSTRACT
Fajr application is a mobile application that contains Islamic contents for moslem daily life. To get more users, the developers create a main feature called Fajr Cards. But, Fajr Cards has not been able to attract users. It is based on the minimum of users that using Fajr Cards. Fajr Cards as a feature based on contents can be improved by adding more content that have relevance value to users. Twitter as microblog social media have real time and a lot of data. Those data can be used as an actual source data for analyze. Text mining such as text classification will be used to analyze the data. The purpose of this research is to get what classification method that suited best for this classification. Methodology that used in this research is Text Mining including preprocess and Text Classification. The expected results is to know what classification method that suited best for Fajr Card?s theme classification.;Fajr application is a mobile application that contains Islamic contents for moslem
daily life. To get more users, the developers create a main feature called Fajr
Cards. But, Fajr Cards has not been able to attract users. It is based on the
minimum of users that using Fajr Cards. Fajr Cards as a feature based on contents
can be improved by adding more content that have relevance value to users.
Twitter as microblog social media have real time and a lot of data. Those data can
be used as an actual source data for analyze. Text mining such as text
classification will be used to analyze the data. The purpose of this research is to
get what classification method that suited best for this classification.
Methodology that used in this research is Text Mining including preprocess and
Text Classification. The expected results is to know what classification method that suited best for Fajr Card?s theme classification.;Fajr application is a mobile application that contains Islamic contents for moslem
daily life. To get more users, the developers create a main feature called Fajr
Cards. But, Fajr Cards has not been able to attract users. It is based on the
minimum of users that using Fajr Cards. Fajr Cards as a feature based on contents
can be improved by adding more content that have relevance value to users.
Twitter as microblog social media have real time and a lot of data. Those data can
be used as an actual source data for analyze. Text mining such as text
classification will be used to analyze the data. The purpose of this research is to
get what classification method that suited best for this classification.
Methodology that used in this research is Text Mining including preprocess and
Text Classification. The expected results is to know what classification method that suited best for Fajr Card?s theme classification., Fajr application is a mobile application that contains Islamic contents for moslem
daily life. To get more users, the developers create a main feature called Fajr
Cards. But, Fajr Cards has not been able to attract users. It is based on the
minimum of users that using Fajr Cards. Fajr Cards as a feature based on contents
can be improved by adding more content that have relevance value to users.
Twitter as microblog social media have real time and a lot of data. Those data can
be used as an actual source data for analyze. Text mining such as text
classification will be used to analyze the data. The purpose of this research is to
get what classification method that suited best for this classification.
Methodology that used in this research is Text Mining including preprocess and
Text Classification. The expected results is to know what classification method that suited best for Fajr Card’s theme classification.]"
2015
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Ari Hermawan
"[ABSTRAK
Perkembangan sistem informasi saat ini menyebabkan sistem informasi yang
digunakan dalam sebuah organisasi terus bertambah dan semakin kompleks. Hal
ini juga memunculkan fenomena meningkatnya jumlah data yang diolah dan
dihasilkan oleh sistem informasi. Kondisi ini membawa tantangan baru dalam
pengawasan operasional sistem informasi, seperti keterlambatan peringatan
kesalahan atau membanjirnya jumlah peringatan yang tidak tepat sasaran.
Penelitian ini bertujuan membangun sebuah sistem pengawasan aplikasi pada
sistem informasi di PT. XYZ menggunakan Event Driven Architecture dan Machine Learning. Pengembangan ini menggunakan perangkat lunak R dan TIBCO StreamBase.

ABSTRACT
Advancement in information system nowadays has generated more
quantities and complexities of an organization?s information system. This fact
also leads to a phenomenon of the increase of data volume being processed and
also generated by any information system. This condition has brought a new
challenge in the operation and monitoring of the information systems, such as
delays in failure alert and also floods of incorrect alerts.
This research aims to build a monitoring system for applications in the PT.
XYZ information systems, using Event Driven Architecture and Machine Learning techniques. This development is done using R software and also TIBCO StreamBase. , Advancement in information system nowadays has generated more
quantities and complexities of an organization’s information system. This fact
also leads to a phenomenon of the increase of data volume being processed and
also generated by any information system. This condition has brought a new
challenge in the operation and monitoring of the information systems, such as
delays in failure alert and also floods of incorrect alerts.
This research aims to build a monitoring system for applications in the PT.
XYZ information systems, using Event Driven Architecture and Machine Learning techniques. This development is done using R software and also TIBCO StreamBase. ]"
2015
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Dita Maryani
"Penelitian ini menghasilkan rancangan alat bantu berupa Sistem Pakar Kombinasi Analytical Hierarchy Process (AHP) Berbasis Web dalam Pemilihan Alat Kontrasepsi didasarkan tidak ditemukannya satu metode kontrasepsi yang aman dan efektif bagi semua klien kecuali telah disesuaikan dengan karakteristik individu. Desain penelitian ini adalah kasus kontrol. Keputusan yang dihasilkan konsultasikb.com hanya berupa saran-saran yang harus dikonsultasikan kepada Tenaga Kesehatan.

This research resulted in a tool design called Web Based Expert System Combined with Analytical Hierarchy Process (AHP) in Contraceptives Selection by reason of not found a contraception method which is safe and effective for all clients unless they have been adapted to the individual characteristics. This study was a case control. A decision produced by konsultasikb.com is kind of suggestions that still have to be consulted further to the Health Scientist."
Depok: Fakultas Kedokteran Universitas Indonesia, 2016
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dina Chahyati
"Pelacakan orang banyak pada video berdasarkan hasil deteksi orang pada setiap frame merupakan problem yang menantang karena kompleksitas yang dimilikinya. Kesalahan deteksi orang pada setiap frame akan menyebabkan kesalahan pelacakan orang pada keseluruhan video. Pada penelitian ini, diusulkan metode pelacakan yang dapat meminimalkan propagasi kesalahan dari kesalahan deteksi dengan waktu pelacakan yang tidak terlalu lama. Penelitian ini menggunakan deep convolutional neural network (DCNN) seperti Faster-RCNN dan RetinaNet sebagai detektor objek dan algoritma Hungarian sebagai metode asosiasi antar orang-orang yang terdeteksi di setiap frame. Matriks masukan untuk algoritma Hungarian terdiri dari kedekatan vektor ciri DCNN yang dihasilkan oleh Siamese Network, jarak titik tengah bounding box, dan perbandingan irisan-gabungan (IoU) dari bounding box. Pada tahap akhir dilakukan interpolasi terhadap hasil pelacakan. Metode yang diusulkan menghasilkan MOTA 61.0 pada dataset benchmark pelacakan orang banyak MOT16.

Multiple object (human) tracking in video based on object detection in every frame is a challenging problem due to its complexity. Error in the detection phase will cause error in the tracking phase. In this research, a multiple human tracking method is proposed to minimize the error propagation. The method uses deep convolutional neural network (DCNN) such as Faster-RCNN and RetinaNet as object detector and Hungarian algorithm as association method among detected humans in consecutive frames. The input matrix for Hungarian algorithm consists of the similarity of DCNN feature vector resulted from Siamese network, the distance of bounding box centers, and bounding box intersection of union (IoU). In the last step, interpolation is applied to the tracking result. The proposed method achieves 61.0 MOTA in multiple object tracking benchmark MOT16."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Sani Muhamad Isa
"penelitian ini diusulkan implementasi 2D dan 3D Set Partitioning In Hierarchical Trees (SPIHT) coding pada kompresi data ECG multi-lead. Implementasi SPIHT mereduksi tiga jenis redundansi yang umumnya terdapat pada sinyal electrocardiogram (ECG), yaitu redundansi intra-beat, inter-beat, dan inter-lead. Kami juga mengusulkan tiga teknik optimisasi untuk meningkatkan kinerja kompresi lebih lanjut dengan mengelompokkan sinyal ECG yang berasal dari beberapa lead, menyusun kembali posisi ECG cycle pada 2D ECG array (beat reordering), dan menormalisasikan amplitudo dari 2D ECG array dengan residual calculation. Beat reordering menyusun posisi beat pada 2D ECG array berdasarkan kemiripannya dengan beat terdekat. Penyusunan ini mengurangi variasi antar beat-beat yang berdekatan sehingga 2D ECG array mengandung lebih sedikit komponen frekuensi tinggi. Residual calculation mengoptimalkan penggunaan ruang penyimpanan lebih lanjut dengan meminimalkan variasi amplitudo dari 2D ECG array.
Hasil eksperimen terhadap sejumlah record pada St Petersburg INCART 12-lead Arrhythmia Database menunjukkan bahwa metode yang diusulkan menghasilkan distorsi rendah pada rasio kompresi 8 dan 16. Hasil eksperimen juga memperlihatkan bahwa pendekatan 3D SPIHT memiliki kinerja kompresi yang lebih baik dibanding 2D SPIHT. Untuk mengevaluasi kualitas sinyal hasil rekonstruksi pada permasalahan klasifikasi, pada penelitian ini kinerja dari metode kompresi sinyal ECG dianalisis dengan cara membandingkan sinyal asli dengan sinyal hasil rekonstruksi pada dua permasalahan; pertama, klasifikasi sleep stage berdasarkan sinyal ECG; kedua, klasifikasi arrhythmia. Hasil eksperimen menunjukkan bahwa akurasi dari klasifikasi sleep stage dan klasifikasi arrhythmia menggunakan sinyal hasil rekonstruksi sebanding dengan menggunakan sinyal input. Metode yang diusulkan dapat mempertahankan karakteristik sinyal pada kedua permasalahan klasifikasi tersebut.

In this study we proposed the implementation of 2D and 3D Set Partitioning In Hierarchical Trees (SPIHT) coding to a multi-lead ECG signal compression. The implementation of SPIHT coding decorrelates three types of redundancy that typically found on a multi-lead electrocardiogram (ECG) signal i.e. intra-beat, inter-beat, and inter-lead redundancies. We also proposed three optimization techniques to improve the compression performance further by grouping the ECG signal from precordial and limb leads, reordering the ECG cycles position in the 2D ECG array, and normalizing the amplitude of 2D ECG array by residual calculation. Beat reordering rearranged beat order in 2D ECG array based on the similarity between adjacent beats. This rearrangement reduces variances between adjacent beats so that the 2D ECG array contains less high frequency component. The residual calculation optimizes required storage usage further by minimizing amplitude variance of 2D ECG array.
Our experiments on selected records from St Petersburg INCART 12-lead Arrhythmia Database show that proposed method gives relatively low distortion at compression rate 8 and 16. The experimental results shows that 3D SPIHT approach gives better compression performance than 2D SPIHT. To evaluate the quality of reconstructed signal for classification task, we analyzed the performance of electrocardiogram (ECG) signal compression by comparing original and reconstructed signal on two problems. First, automatic sleep stage classification based on ECG signal; second, arrhythmia classification. Our experimental results showed that the accuracy of sleep stage classification and arrhythmia classification using reconstructed ECG signal from the proposed method is comparable to the original signal. The proposed method preserved signal characteristics for the automatic sleep stage and arrhythmia classification problems.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2014
D1963
UI - Disertasi Membership  Universitas Indonesia Library
cover
Laode Mohammad Rasdi Rere
"ABSTRAK
Dalam beberapa tahun terakhir, Deep Learning DL telah menarik banyak perhatian dalam penelitian pemelajaran mesin. Metode ini telah berhasil dipakai untuk berbagai aplikasi pada pemrosesan suatu, robotika, pengenalan fonetik, pencarian informasi dan bahkan analisa molekul. Meskipun DL telah berhasil sukses untuk diterapkan dalam berbagai bidang aplikasi, training yang diperlukan pada metode ini tidaklah mudah. Sejumlah cara telah diusulkan untuk membuat proses training DL menjadi lebih optimal, beberapa diantanya dengan menambahkan proses pre-training, memutuskan beberapa jaringan dalam lapisan, ataupun mengganti fungsi aktivasi dan metode gradien standar yang dipergunakan. Disertasi ini menggunakan pendekatan lain dalam optimasi DL, yaitu memakai algoritme metaheuristik. Secara umum disertasi ini dibagi dalam dua bagian besar. Bagian pertama adalah studi awal penelitian yang difokuskan pada beberapa eksperimen yang berkaitan dengan algoritme metaheuristik dan aplikasi DL dalam klasifikasi citra. Bagian kedua dari disertasi berkaitan dengan penerapan algoritme metaheuristik dalam DL. Hasil pada bagian ini misalnya untuk optimasi metode Convolutional Neural Nework CNN menggunakan dataset CIFAR10, diperoleh untuk Top-1 error pada validasi adalah 99,05 . Hasil ini lebih baik dari nilai akurasi CNN asli sebesar 88,21 , fine-tuning CNN menggunakan Harmony Search yang diusulkan G. Rosa dkk sebesar 78,28 , dan bahkan State of the art saat ini sebesar 96,53 dengan Fractional Max-Pooling.

ABSTRACT
In recent years, deep Learning DL has drawn many attention in machine learning research. This method has been successfully used in various applications, such as sound process, robotics, phonetic identification, information retrieval, and even molecule analysis. Although DL has been successful to be applied in many fields, it is difficult to train in this method. Various attempts and methods has been proposed to make the DL training process become more optimum, some of them are by adding pre training process, drop out some networks in the layer, or by replacing activation function and standard gradient method being used. This dissertation takes another way to optimize a DL, i.e. using metaheuristic algorithms. Overall, this dissertation will be divided into two main parts. The first part is a preliminary study of research, focusing on several experiments which were related to the metaheuristic algorithm and DL application in image classification. The second part of this dissertation is related to application of metaheuristic algorithm in DL. The results in this part, for example, the optimization of CNN method using CIFAR10 dataset for Top 1 error in validation is 99.05 . This result is higher than the accuracy level from original CNN 88,21 , fine tuning CNN using Harmony Search suggested by G. Rossa et.al 78.28 , and even ldquo State of the art rdquo right now using Fractional Max Pooling 96.53 "
2017
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Arif Budiman
"ABSTRAK
Tantangan aliran data besar membutuhkan mesin pembelajaran khusus. Ragam, variabilitas dan kompleksitas berkaitan dengan masalah pergeseran konsep CD . Jumlah dan kecepatan berkaitan dengan masalah skalabilitas. Kami mengusulkan pendekatan integrasi jaringan syaraf konvolusi CNN dengan mesin pembelajaran ekstrem ELM yang menggunakan banyak CNNELM secara paralel. Solusi CD pendekatan pertama, CNNELM adaptif ACNNELM-1 menggunakan ELM tunggal dengan banyak CNN dengan menerapkan Adaptif Online Sequential ELM. Pendekatan ke- dua ACNNELM-2 menggunakan paduan penggabungan matriks dari banyak CNNELM. Solusi skalabilitas, Distributed averaging DA CNNELM bekerja dengan konsep MapReduce. CNNELM mulai dengan cetakan bobot yang sama kemudian dilatih secara asinkronus menggunakan partisi dari data pelatihan. Hasil akhir didapat dengan merata-ratakan bobot kernel dan ELM output. Ini menghemat waktu pelatihan dibandingkan satu CNNELM dengan pelatihan keseluruhan data. Kami mempelajari metoda pelatihan propagasi balik untuk memperbaiki akurasi dengan iterasi. Kami melakukan verifikasi dengan data extended MNIST, Not-MNIST dan CIFAR10. Kami men-simulasikan pergeseran virtual, pergeseran nyata , dan pergeseran hibrid. Pelatihan DA membagi data pelatihan menjadi beberapa himpunan partisi lebih kecil. Perangkat yang dipakai adalah Deep Learning toolbox dengan CPU parallel, dan Matconvnet dengan GPU. Kelemahan metoda ini memerlukan pemilihan penambahan parameter pembelajaran dan distribusi data pelatihan.

ABSTRACT
Big stream data challenges need special machine learning. Variety, variability and complexity are related with concept drift CD problem. Volume and velocity are related with scalability problem. We proposed integration approach Convolutional Neural Network CNN with Extreme Learning Machine ELM that used multi parallel CNNELM. For CD, the 1st approach, the Adaptive CNNELM ACNNELM 1 used single ELM with multi CNN by employing Adaptive Online Sequential ELM. The 2nd approach ACNNELM 2 used matrices concatenation ensemble from multi CNNELM. For scalability solution, the distributed averaging DA CNNELM worked with MapReduce concept. CNNELM started with the same weight template afterward trained asynchronously using the partition of training data. Final result obtained by averaging all kernel and ELM output weights. This saved training time instead of single CNNELM trained by the whole data. We studied the backpropagation method to improve the accuracy through iterations. We verified using extended MNIST, not MNIST and CIFAR10 data set. We simulated virtual drift, real drift, and hybrid drift. The DA training divided the training data set to be some smaller partition set. The tools are Deep Learning toolbox with CPU parallel enhancement, and Matconvnet with GPU. The drawbacks need additional learning parameters and the distribution of training data selection."
2017
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Intan Nurma Yulita
"ABSTRAK
Kurangnya melatonin pada anak-anak dengan Autisme menyebabkan mereka sulit tidur dibandingkan dengan anak-anak lain. Akibatnya, masalah gangguan tidur ini meningkatkan perilaku menyimpang anak-anak dengan autisme. Polisomnografi menjadi salah satu alternatif yang dapat dilakukan untuk mendiagnosis gangguan tidur mereka. Untuk mengatasi masalah ini, kami mengembangkan sistem yang dapat secara otomatis mengklasifikasikan tahap tidur. Penelitian ini juga mengusulkan metode baru untuk klasifikasi tahap tidur, yang disebut metode FastConvolutional. Metode yang diusulkan dievaluasi terhadapdataset yang dikumpulkan di Rumah Sakit Mitra Keluarga Kemayoran, Indonesia. Berdasarkan penelitian yang telah dilakukan, FastConvolutional memiliki kinerja terbaik dibandingkan dengan semua classifier untuk dataset Autisme. F-measure -nya adalah 51,33 . Metode FastConvolutional bekerja dengan baik pada dataset yang diuji. Metode ini mencapai hasil dengan F-measure yang tinggi dan running time yang efisien. Dengan demikian, metode ini dapat menjadi classifier yang menjanjikan untuk klasifikasi tahap tidur.

ABSTRACT
A lack of the melatonin in children with Autism causes them difficult to sleep compared with other children. As a result, the sleep disorder increases the deviant behavior of children with Autism. Polysomnography becomes one of the alternatives that can be done to diagnose their sleep disorders. To overcome this problem, we developed a system that can automatically classify sleep stages. This study also proposes a new method for sleep stage classification, called the FastConvolutional method. The proposed method was evaluated against a sleep datasets that were collected in Mitra Keluarga Kemayoran. Based on research that has been done, the FastConvolutional had the best performance compared to all the classifier for Autism dataset. Its F-measure was 51.33 . The FastConvolutional method worked well on the tested datasets. It achieved a high F-measure result and an efficient running time. Thus, it can be considered a promising tool for sleep stage classification. "
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2018
D2489
UI - Disertasi Membership  Universitas Indonesia Library
cover
Derwin Suhartono
"ABSTRAK
Argumentation mining merupakan bidang penelitian yang berfokus pada kalimat dengan tipe argumentasi. Kalimat argumentasi sering digunakan pada komunikasi sehari-hari serta memiliki peran penting pada setiap proses pengambilan keputusan atau kesimpulan. Tujuan penelitian ini adalah untuk melakukan observasi mengenai pemanfaatan deep learning dengan mekanisme atensi pada anotasi dan analisa kalimat argumentasi.Anotasi argumentasi merupakan pengelompokan komponen argumen dari sebuah wacana ke dalam beberapa kelas. Kelas didefinisikan menjadi 4, yaitu major claim, claim, premise dan non-argumentative. Analisa argumentasi mengarah kepada karakteristik dan validitas argumentasi yang tersusun pada topik tertentu. Salah satu bentuk analisa adalah penilaian apakah argumentasi yang dibentuk sudah terkategori sufficient atau belum. Dataset yang digunakan untuk anotasi dan analisa argumentasi adalah 402 esai persuasif. Dataset ini juga ditranslasikan ke dalam Bahasa Indonesia untuk memberikan gambaran bagaimana model bekerja pada bahasa lain.Beberapa model deep learning, diantaranya CNN Convolutional Neural Network , LSTM Long Short-Term Memory , dan GRU Gated Recurrent Unit digunakan untuk anotasi dan analisa argumentasi sedangkan HAN Hierarchical Attention Network hanya digunakan untuk analisa argumentasi. Mekanisme atensi ditambahkan pada model sebagai pemberi weighted access untuk performa yang lebih baik. Classifier yang digunakan adalah fully connected layer dan XGBoost.Dari eksperimen yang dilakukan, integrasi deep learning dengan mekanisme atensi untuk anotasi dan analisa kalimat memberikan hasil yang lebih baik dari penelitian sebelumnya.

ABSTRACT
Argumentation mining is a research field which focuses on sentences in type of argumentation. Argumentative sentences are often used in daily communication and have important role in each decision or conclusion making process. The research objective is to do observation in deep learning utilization combined with attention mechanism for argument annotation and analysis.Argument annotation is argument component classification from discourse to several classes. Classes include major claim, claim, premise and non-argumentative. Argument analysis points to argumentation characteristics and validity which are arranged in one topic. One of the analysis is how to assess whether an established argument is categorized as sufficient or insufficient. Datased used for argument annotation and analysis is 402 persuasive essays. This data is translated to Bahasa as well to give overview about how does it work with other language.Several deep learning models such as CNN Convolutional Neural Network , LSTM Long Short-Term Memory , and GRU Gated Recurrent Unit are utilized for argument annotation and analysis while HAN Hierarchical Attention Network is utilized only for argument analysis. Attention mechanism is combined with the model as weighted access setter for a better performance. The classifiers are fully connected layer and XGBoost.From the whole experiments, deep learning and attention mechanism integration for argument annotation and analysis arrives in a better result compared with previous research."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2018
D2502
UI - Disertasi Membership  Universitas Indonesia Library
cover
Agus Widodo
"Saat ini penentuan area riset masih banyak bergantung kepada pendapat para ahli. Meskipun ahli tersebut memiliki pengetahuan yang mendalam di bidangnya, akan tetapi tidak semua area riset yang emerging dapat diketahui oleh ahli tersebut mengingat cepatnya perkembangan sumber-sumber informasi tentang ilmu pengetahuan dan teknologi. Namun demikian, analisis data yang berjumlah besar memerlukan waktu yang lama dan bisa jadi subyektif jika menggunakan cara manual. Beberapa penelitian sebelumnya telah menggunakan teknik kuantitatif dengan menghitung trend berdasarkan jumlah kata kunci dari suatu topik riset dan memprediksi trend tersebut untuk masa yang akan datang. Untuk prediksi trend dari data time series, saat ini pendekatan machine learning mulai banyak dikaji disamping pendekatan statistik yang sebelumnya lazim digunakan.
Sementara itu, pendekatan ensemble yang menggabungkan hasil prediksi, teknik prediksi atau representasi data diyakini dapat meningkatkan akurasi prediksi. Multiple Kernel Learning (MKL) merupakan suatu teknik ensemble melalui penggabungan kernel yang menggunakan teknik machine learning, yakni Support Vector Machine (SVM), sebagai classifier atau prediktor. Dalam penelitian sebelumnya, MKL telah dimanfaatkan untuk menggabungkan fitur, yang biasa disebut sebagai data integration, dalam bidang image processing tetapi masih menggunakan single kernel. Dalam penelitian ini, MKL dimanfaatkan untuk menggabungkan fitur data time series yang berupa sliding windows dan diterapkan pada multiple kernel. Disamping itu, penelitian ini juga mengajukan penggunaan data historis sebagai pengganti training dataset untuk memilih model prediksi yang sesuai dengan karakteristik time series karena setiap model prediksi memiliki kelebihan dan keterbatasan dalam memprediksi data time series yang jenisnya cukup beragam.

Currently, the determination of the research area is still largely dependent on the opinion of experts. Although experts have in-depth knowledge in the field, but not all areas of emerging research can be known by the experts given the rapid development of sources of information regarding science and technology. However, the analysis of large amounts of data would take a quite long time and the result could be subjective if a manual method is employed. Several previous studies have used quantitative techniques to calculate trends based on the number of keywords on research topics and forecast their future trends. For the trend forecasting of time series data, currently, machine learning approaches have been extensively studied in addition to the previous statistical approaches which are commonly used.
Meanwhile, an ensemble approach that may combine the prediction results, prediction techniques or data representations has the capability to increase the prediction accuracy. Multiple Kernel Learning (MKL) is one of such ensemble methods that optimizes the combination of kernels through the use of machine learning technique, such as Support Vector Machine (SVM), as a classifier or predictor. In previous studies, MKL has been used to combine features, which is commonly referred to as the data integration approach, in the field of image processing but is still implemented on a single kernel. In this study, MKL is used to combine the features of time series data in the form of sliding windows and tested on multiple kernels. In addition, this study also proposes the use of historical data as a substitute for the training dataset to select the prediction technique based on the characteristics of time series considering the diverse kind of time series data such that no single prediction technique can be used for all types of data."
Depok: Universitas Indonesia, 2014
D1972
UI - Disertasi Membership  Universitas Indonesia Library