Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 1 dokumen yang sesuai dengan query
cover
Michelle Annice Tjitra
Abstrak :
Hipertensi merupakan salah satu faktor risiko dari kardiovaskular yang mematikan yang dikenal sebagai “the silent killer” dikarenakan hipertensi tidak menunjukkan gejala apapun dan tidak memiliki keluhan namun hipertensi mampu menyebabkan penyakitpenyakit lain atau komplikasi seperti kerusakan pada organ. Pengukuran parameterparameter fisiologis seperti tekanan darah adalah hal yang vital dalam menunjang pendeteksian dan analisis dari penyakit kardiovaskular. Namun, hingga saat ini beberapa metode-metode pengukuran yang tersedia saat ini membutuhkan instrumen yang canggih dan dibutuhkannya tenaga kesehatan dengan keahlian khusus untuk mengoperasikan instrumen tersebut. Selain itu, penggunaan cuff pada alat sphygmomanometer sangat tidak nyaman untuk digunakan apabila diperlukannya pengukuran tekanan darah secara kontinu serta pengoperasian instrumen membutuhkan kontak fisik sehingga meningkatkan kemungkinan terpaparnya COVID-19. Oleh karena itu, dibutuhkannya metode pengukuran darah tanpa cuff, mampu mengukur tekanan darah secara kontinu, dan mampu mengukur tekanan darah dengan akurat yang mampu dioperasikan dengan mudah. Penelitian ini bertujuan untuk membuat desain rancangan prototipe alat pengukur tekanan darah dengan menggunakan sensor MAX30102 dan ESP32 secara wireless melalui sinyal photoplethysmograph dengan pengolahan sinyal PPG berbasis pada ekstraksi fitur dan machine learning. Sistem pengukuran menggunakan sensor PPG dan microcontroller untuk mendapatkan sinyal PPG dari subjek yang kemudian sinyal melalui tahap preprocessing untuk menghilangkan noise kemudian sinyal diproses dengan peak detection dan ekstraksi fitur. Data tersebut kemudian akan dikumpulkan untuk dilatih pada machine learning untuk mendapatkan model yang mampu memprediksi nilai parameter fisiologis, yaitu tekanan darah. Model terbaik yang didapatkan, yaitu model dengan dataset 6 subjek dengan jumlah baris hasil ekstraksi 4 fitur sinyal PPG berjumlah 20 baris dengan perbandingan data training dan data validation sebesar 90:10 tanpa regularization dengan algoritma XGBoost dengan evaluasi performa sebesar 0,49/0,59 untuk koefisien determinasi dan nilai error sebesar 4,53/4,57 digunakan pada Graphical User Interface (GUI) yang berbasis web sehingga model dapat terintegrasi dengan sistem yang kemudian mampu diimplementasikan secara langsung oleh user. ...... Hipertensi merupakan salah satu faktor risiko dari kardiovaskular yang mematikan yang dikenal sebagai “the silent killer” dikarenakan hipertensi tidak menunjukkan gejala apapun dan tidak memiliki keluhan namun hipertensi mampu menyebabkan penyakitpenyakit lain atau komplikasi seperti kerusakan pada organ. Pengukuran parameterparameter fisiologis seperti tekanan darah adalah hal yang vital dalam menunjang pendeteksian dan analisis dari penyakit kardiovaskular. Namun, hingga saat ini beberapa metode-metode pengukuran yang tersedia saat ini membutuhkan instrumen yang canggih dan dibutuhkannya tenaga kesehatan dengan keahlian khusus untuk mengoperasikan instrumen tersebut. Selain itu, penggunaan cuff pada alat sphygmomanometer sangat tidak nyaman untuk digunakan apabila diperlukannya pengukuran tekanan darah secara kontinu serta pengoperasian instrumen membutuhkan kontak fisik sehingga meningkatkan kemungkinan terpaparnya COVID-19. Oleh karena itu, dibutuhkannya metode pengukuran darah tanpa cuff, mampu mengukur tekanan darah secara kontinu, dan mampu mengukur tekanan darah dengan akurat yang mampu dioperasikan dengan mudah. Penelitian ini bertujuan untuk membuat desain rancangan prototipe alat pengukur tekanan darah dengan menggunakan sensor MAX30102 dan ESP32 secara wireless melalui sinyal photoplethysmograph dengan pengolahan sinyal PPG berbasis pada ekstraksi fitur dan machine learning. Sistem pengukuran menggunakan sensor PPG dan microcontroller untuk mendapatkan sinyal PPG dari subjek yang kemudian sinyal melalui tahap preprocessing untuk menghilangkan noise kemudian sinyal diproses dengan peak detection dan ekstraksi fitur. Data tersebut kemudian akan dikumpulkan untuk dilatih pada machine learning untuk mendapatkan model yang mampu memprediksi nilai parameter fisiologis, yaitu tekanan darah. Model terbaik yang didapatkan, yaitu model dengan dataset 6 subjek dengan jumlah baris hasil ekstraksi 4 fitur sinyal PPG berjumlah 20 baris dengan perbandingan data training dan data validation sebesar 90:10 tanpa regularization dengan algoritma XGBoost dengan evaluasi performa sebesar 0,49/0,59 untuk koefisien determinasi dan nilai error sebesar 4,53/4,57 digunakan pada Graphical User Interface (GUI) yang berbasis web sehingga model dapat terintegrasi dengan sistem yang kemudian mampu diimplementasikan secara langsung oleh user.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library