Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Evan Muhammad Fachriza
"Suatu graf G=(V,E) terdiri dari himpunan simpul hingga tak kosong V(G) dan himpunan busur hingga E(G). Pelabelan total antiajaib lokal pada graf G didefinisikan sebagai bijeksi f:V(G)UE(G)->{1,2,...,|V(G)|+|E(G)|} sedemikian sehingga untuk semua simpul u dan v bertetanggan berlaku w_t(u)=/w_t(v), dengan w_t(u)=f(u)+sum_(e in E(u))(f(e)) adalah bobot simpul u, dan E(u) adalah himpunan busur yang hadir pada simpul u. Pada pelabelan total antiajaib lokal pada graf G, tiap bobot simpul w_t(u) yang berbeda dianggap sebagai warna yang berbeda, sehingga pelabelan total antiajaib lokal pada graf G menginduksi pewarnaan simpul pada graf G, dengan banyaknya minimum warna yang digunakan atau Bilangan kromatiknya dinotasikan oleh chi_(lat)(G). Graf barbel roda BW_n, dengan n>=3, didefinisikan sebagai graf yang memiliki dua subgraf roda W_n yang dihubungkan oleh satu busur pada masing-masing simpul pusatnya. Penelitian ini dilakukan dengan tujuan untuk mengonstruksi pelabelan total antiajaib lokal pada graf barbel roda BW_n untuk menentukan Bilangan kromatik total antiajaib lokalnya.

A graph G=(V,E) consists of finite nonempty vertices set V(G) and finite edges set E(G). A local antimagic total labeling on graph G defined as a bijective mapping f:V(G)UE(G)->{1,2,...,|V(G)|+|E(G)|} such as for all two adjacent vertices u and v applies w_t(u)=/w_t(v), where w_t(u)=f(u)+sum_(e in E(u))(f(e)) is a weight of vertex u, and E(u) is a set of adjacent edges on vertex u. Each distinct vertex weights in local antimagic total labeling are considered as distinct colors, so that local antimagic total labeling on graph G induces vertex coloring on graph G, with minimum numbers of colors or its chromatic number is denoted as chi_(lat)(G). Barbell wheel graph BW_n, with n>=3, is defined as a graph with two wheel-subgraphs W_n that are connected by one edge at each center vertex. This research was conducted to construct local antimagic total labeling on barbell wheel graph BW_n to determine its local antimagic total chromatic number."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Prasetya Nugroho Hutomo
"Sebuah graf dengan simpul dapat direpresentasikan sebagai matriks simetris berukuran nxn seperti matriks ketetanggaan dan laplacian. Matriks simetris dijamin oleh teorema spektral, memiliki nilai eigen lengkap (ruang eigen setara dengan R^n). Hal ini memberikan kemungkinan untuk menelaah sifat graf dengan menggunakan nilai eigen dan vektor eigen matriks ketetanggaan dan laplacian. Himpunan nilai eigen beserta multiplisitasnya disebut sebagai spektrum. Pada skripsi ini dibahas tentang sifat dari spektrum matriks ketetanggaan dari graf teratur yang diasosiasikan pada nilai eigen terbesarnya serta sifat dari spektrum matriks laplacian dari graf teratur yang diasosiasikan pada rata-rata nilai eigen. Selanjutnya, juga dibahas keterhubungan antara spektrum matriks laplacian dan ketetanggaan pada graf reguler.

A graph with vertices can be represented as a symmetric matrix of size nxn, such as an adjacency matrix and Laplacian matrix. Symmetric matrices, guaranteed by the spectral theorem, have a complete eigenvalue (eigenspace equal to R^n). This provides ways to learn graphs using eigenvalues and eigenvectors of their adjacency and laplacian matrices. A spectrum is a set of eigenvalues together with their multiplisities. This thesis discuss the properties of the spectrum of the adjacency matrix of regular graphs associated with their largest eigenvalue, as well as the properties of the spectrum of the Laplacian matrix of regular graphs associated with the average eigenvalue. Subsequently, the interrelation between the spectra of the laplacian and adjacency matrices in regular graphs will be examined."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alexandria Samantha Nicole
"Misalkan G suatu graf dengan himpunan simpul V(G) dan himpunan busur E(G). Pelabelan antiajaib lokal pada graf G dengan |V(G)| simpul dan |E(G)| busur di definisikan sebagai fungsi f∶E(G)→{1,2,…,|E(G)|} sedemikian sehingga bobot dari sembarang dua simpul bertetangga u dan v berbeda, w(u)≠w(v), dengan w(u)= ∑_(e∈E(u))〖f(e)〗 dan E(u) adalah himpunan busur yang hadir pada simpul u. Terdapat suatu notasi χ_la (G) yang merupakan bilangan kromatik pada pelabelan antiajaib lokal yaitu minimum banyak bobot berbeda pada simpul di suatu graf. Graf lili dapat dinotasikan sebagai l_n=Amal{{K_(1,n),K_(1,n),P_n,P_n},x_n} dengan n≥3. Penelitian ini bertujuan untuk mengkonstruksi pelabelan antiajaib lokal pada graf lili l_n untuk mendapatkan nilai χ_la(l_n). Dari hasil penelitian, diperoleh bilangan kromatik pelabelan antiajaib lokal pada graf lili adalah χ_la(l_n)=2n+3.

Let G be a graph with vertex set V(G) and edge set E(G). A local antimagic labelling on graph G with |V(G)| vertices and |E(G)| edges is defined as a function f∶E(G)→{1,2,…,|E(G)|} such that the weights of any two adjacent vertices u and v are different, w(u)≠w(v), where w(u)= ∑_(e∈E(u))〖f(e)〗 and E(u) is the set of edges incident to vertex u. There is a notation χ_la (G), which represents the chromatic number in local antimagic labeling, defined as the minimum number of distinct weights on the vertices of a graph. The lilly graph can be denoted as l_n=Amal{{K_(1,n),K_(1,n),P_n,P_n},x_n} with n≥3. This research aims to construct a local antimagic labeling on lilly graph l_n to obtain the value of χ_la(l_n). The research results show that the chromatic number of the local antimagic labeling on the lilly graph is χ_la(l_n)=2n+3."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library