Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Gitasa Miku Imada
Abstrak :
The global transition to sustainable energy necessitates efficient, eco-friendly hydrogen production methods. Solid Oxide Electrolysis Cells (SOECs) are promising for green hydrogen due to their high efficiency and ability to utilize waste heat. This research optimizes sintering temperatures for the LSCF-GDC/GDC | YSZ | Ni-YSZ cell configuration to enhance SOEC performance and longevity. The study examines varying sintering temperatures (800°C, 900°C, and 1000°C) and their impact on structural and electrochemical characteristics, using SEM-EDX. The findings reveal that higher sintering temperatures promote the formation of SrZrO3. Additionally, the research examines the delamination behavior of the anode at different temperatures, highlighting the critical role of temperature in maintaining structural integrity. At 1000°C, complete delamination occurs, whereas partial delamination at 900°C and no delamination at 800°C emphasize the need for precise temperature control. This delamination is hypothesized to be caused by is the mismatch in thermal expansion coefficients (TECs) between different cell materials. This study contributes to the ongoing efforts to optimize SOEC technology, providing valuable insights into material behavior under high-temperature conditions and guiding future advancements in sustainable hydrogen production. ......Transisi global menuju energi berkelanjutan memerlukan metode produksi hidrogen yang efisien dan ramah lingkungan. Sel Elektrolisis Oksida Padat (SOEC) menjanjikan untuk hidrogen hijau karena efisiensinya yang tinggi dan kemampuannya memanfaatkan panas limbah. Penelitian ini mengoptimalkan suhu sintering untuk konfigurasi sel LSCF-GDC/GDC | YSZ | Ni-YSZ guna meningkatkan kinerja dan umur panjang SOEC. Studi ini memeriksa berbagai suhu sintering (800°C, 900°C, dan 1000°C) dan dampaknya terhadap karakteristik struktural dan elektrokimia, menggunakan SEM-EDX. Temuan mengungkapkan bahwa suhu sintering yang lebih tinggi mempromosikan pembentukan SrZrO3. Selain itu, penelitian ini memeriksa perilaku delaminasi anoda pada berbagai suhu, menyoroti peran penting suhu dalam menjaga integritas struktural. Pada suhu 1000°C, terjadi delaminasi lengkap, sedangkan delaminasi parsial terjadi pada suhu 900°C dan tidak terjadi delaminasi pada suhu 800°C, menekankan perlunya kontrol suhu yang tepat. Delaminasi ini diduga disebabkan oleh ketidakcocokan koefisien ekspansi termal (TEC) antara bahan sel yang berbeda. Studi ini berkontribusi pada upaya berkelanjutan untuk mengoptimalkan teknologi SOEC, memberikan wawasan berharga tentang perilaku material dalam kondisi suhu tinggi dan membimbing kemajuan masa depan dalam produksi hidrogen berkelanjutan.
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fiona Angellinnov
Abstrak :
Nickel manganese cobalt (NMC) merupakan salah satu material yang banyak digunakan sebagai katoda baterai ion litium. NMC merupakan perpaduan dari nikel, mangan, dan kobalt dengan rasio tertentu. Dibandingkan jenis lain, NMC 811 (LiNi0,8Mn0,1Co0,1O2) memiliki kapasitas yang tinggi, harga murah, lebih aman karena tidak beracun dan lebih ramah lingkungan. Meskipun demikian, tingginya kadar nikel pada NMC 811 akan berdampak pada penurunan kapasitas, rate capability yang buruk, dan ketidakstabilan termal dan struktur. Salah satu cara untuk menanggulangi hal tersebut yaitu dengan mengoptimalkan metode preparasi, melakukan doping dan coating pada permukaan NMC. Pada penelitian ini digunakan metode solution-combustion synthesis untuk mensintesis NMC 811 dan NMC 811 doping Sn (LiNi0,8Mn0,1Co0,1-xSnxO2 dengan x = 0,01, 0,03, 0,05). Selain itu, juga dilakukan coating dengan karbon aktif dari arang sekam padi dengan variasi 1, 3, 5 wt.% untuk memperoleh LiNi0,8Mn0,1Co0,1O2/C dan LiNi0,8Mn0,1Co0,1-xSnxO2/C. Karakterisasi bahan dilakukan dengan menggunakan infra merah (Fourier transform infrared, FTIR) untuk mengetahui gugus fungsi, difraksi sinar-X (X-ray diffraction, XRD) untuk melihat struktur kristal, mikroskop electron (field emission scanning electron microscopy, FE-SEM) yang dilengkapi energy dispersive X-ray spectroscopy (EDX) untuk melihat topografi permukaan dan komposisinya, dan Brunauer Emmett Teller (BET) untuk melihat luas permukaan dan pori yang terbentuk. Uji performa baterai dengan katoda material aktif dilakukan menggunakan electrochemical impedance spectroscopy(EIS). Hasil penelitian memperlihatkan bahwa variasi Sn paling baik diberikan oleh x=0,03 (LiNi0,8Mn0,1Co0,07Sn0,03O2) dengan konduktivitas sebesar 2,4626 x 10-5 S/cm. Variasi karbon terbaik diberikan oleh konsentrasi 5 wt.% (LiNi0,8Mn0,1Co0,1/C) dengan konduktivitas 31,9024 x 10-5 S/cm. Dibandingkan dengan NMC 811 tanpa modifikasi yang menunjukkan konduktivtas sebesar 1,5951 x 10-5, modifikasi dengan Sn dan karbon aktif memberikan hasil yang lebih baik. ......Nickel manganese cobalt (NMC) is a widely used active material for lithium-ion battery cathode. NMC is a combination of nickel, manganese, and cobalt with a certain ratio. NMC 811 has high capacity, low cost, less toxic and more environmentally friendly compared to the other NMC type. However, its high nickel content leads to capacity decay, poor rate capability, thermal and structural instability. Many efforts have been explored by many investigators to eliminate the drawbacks by optimizing the preparation method, using dopant, and surface coating. In this work, solution-combustion synthesis was used to synthesize NMC 811 and Sn-doped NMC 811 (LiNi0.8Mn0.1Co0.1-xSnxO2 with x = 0.01, 0.03, 0.05). Coating with activated carbon derived from rice husk was also performed with variation 1, 3, 5 wt.%) to obtain LiNi0.8Mn0.1Co0.1O2/C and LiNi0.8Mn0.1Co0.1-xSnxO2/C. Characterization was performed using Fourier transform infrared (FTIR) for the functional groups, X-ray diffraction (XRD) for crystal structure, field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (FE-SEM/EDX) for surface topography and composition, and Brunauer Emmett Teller (BET) for surface area and pores formation. Performance of the active material as lithium-ion battery cathode was examined using electrochemical impedance spectroscopy (EIS). The results showed that the best performance from Sn doping was obtained from x=0.03 (LiNi0.8Mn0.1Co0.07Sn0.03O2) with the conductivity of 2.4626 x 10-5 S/cm. Meanwhile, coating with activated carbon 5 wt.% (LiNi0.8Mn0.1Co0.1O2/C) provided the highest conductivity of 31.9024 x 10-5 S/cm compared to the other variations. These results are better than the conductivity of NMC 811 with no modification (1.5951 x 10-5 S/cm).
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Antonius Bagas Cahyadi Pangestu
Abstrak :
Transisi global menuju energi hijau dan berkelanjutan memerlukan metode produksi hidrogen yang efisien dan ramah lingkungan. Sel Elektrolisis Oksida Padat (SOEC) memiliki potensi besar dalam produksi hidrogen hijau karena efisiensinya yang tinggi dengan menggabungkan panas dan energi listrik. Penelitian ini bertujuan untuk mengkaji karakteristik SOEC dengan susunan LSCF/GDC | YSZ | Ni-YSZ yang difabrikasi pada variasi suhu sintering guna meningkatkan kinerja dan umur pakai SOEC. Variasi suhu sintering yang diteliti adalah 800°C, 900°C, dan 1000°C, dengan karakteristik struktural dan kimia diamati menggunakan SEM-EDX. Hasil penelitian menunjukkan bahwa suhu sintering 800°C menghasilkan struktur porous interlayer dengan ketebalan 110-117μm. Pada suhu 900°C, ketebalan berkurang menjadi 92-100 μm, dan pada suhu 1000°C, ketebalan lebih lanjut berkurang menjadi 75-90 μm. Degradasi terjadi pada porous interlayer, ditandai dengan persebaran Sr yang cukup tinggi pada interlayer di suhu 800°C. Nilai at% (atomic percentage) Sr tercatat sebesar 3.3% pada 800°C, menurun menjadi 1.3% pada 900°C, dan kembali naik menjadi 2.2% pada 1000°C. Nilai yang tidak konsisten ini disebabkan oleh fenomena overlapping pada beberapa elemen penyusun sel, yang mempengaruhi pembacaan persebaran Sr. Penelitian ini juga menjelaskan sintesis komponen SOEC berbasis solid state reaction dan menekankan pentingnya kontrol mekanisme fabrikasi. Penelitian ini memberikan wawasan berharga tentang perilaku material pada kondisi suhu tinggi dan menjadi panduan penting bagi kemajuan di masa depan dalam produksi hidrogen yang berkelanjutan. ......The global transition towards green and sustainable energy requires efficient and environmentally friendly methods for hydrogen production. Solid Oxide Electrolysis Cells (SOEC) have significant potential for green hydrogen production due to their high efficiency by combining heat and electrical energy. This study aims to examine the characteristics of SOEC with an LSCF/GDC | YSZ | Ni-YSZ configuration fabricated at various sintering temperatures to enhance the performance and longevity of SOEC. The sintering temperatures investigated were 800°C, 900°C, and 1000°C, with structural and chemical characteristics observed using SEM-EDX. The results showed that a sintering temperature of 800°C produced a porous interlayer structure with a thickness of 110-117μm. At 900°C, the thickness decreased to 92-100 μm, and at 1000°C, the thickness further reduced to 75-90 μm. Degradation occurred in the porous interlayer, marked by a high distribution of Sr in the interlayer at 800°C. The atomic percentage (at%) of Sr was recorded at 3.3% at 800°C, decreased to 1.3% at 900°C, and increased again to 2.2% at 1000°C. This inconsistency was due to the overlapping phenomenon of some cell elements, affecting the Sr distribution readings. This study also explains the synthesis of SOEC components based on solid-state reaction and emphasizes the importance of fabrication mechanism control. The research provides valuable insights into material behavior at high temperatures and serves as an important guide for future advancements in sustainable hydrogen production.
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Benediktus Ma’dika
Abstrak :
Baterai litium-ion merupakan teknologi yang menjanjikan untuk mendukung transisi energi berbasis fosil ke energi baru terbarukan pada kendaraan listrik yang ramah lingkungan karena kinerja penyimpanan energinya yang unggul. Penelitian material energi untuk baterai litium-ion terus dilakukan secara intensif hingga saat ini. Untuk mendukung hal tersebut, penelitian ini mensintesis Lithium Lanthanum Titanate ( LLTO, dengan formula kimia Li0,5La0,5TiO3) dari kombinasi lantanum oksalat lokal (95,296 % atomik lanthanum), litium karbonat komersial dan titanium oksida komersial melalui solid-state reaction yang sederhana dan berbiaya rendah. Dalam metode ini, digunakan kalsinasi dua tahap di mana tahap pertama dilakukan pada temperatur 800 °C selama 8 jam di bawah kondisi atmosfer biasa sedangkan tahap kedua dilakukan pada tiga variasi temperatur yakni 1.050 °C, 1.150 °C dan 1.250 °C selama 12 jam di bawah kondisi atmosfer biasa yang masing-masing menghasilkan 97,98, 98,141 dan 92,328 % berat Li0,5La0,5TiO3. LLTO yang disintesis pada temperatur kalsinasi kedua 1.150 °C menunjukkan luas permukaan dan volume pori yang paling besar, butir-butir tersusun secara acak dan memiliki sifat pseudokapasitansi sehingga memberikan kapasitas spesifik yang tinggi sebesar 17.120 mAh g-1 (pada C-rate 0,5 dan potensial yang mendekati nol) dan konduktivitas yang tinggi sekitar 2,45 × 10 -2 S/cm. LLTO ini menjanjikan untuk digunakan sebagai anoda potensial rendah dalam baterai litium-ion. ......Lithium-ion battery is one of the promising technologies to support the transition of fossil-based energy to renewable energy in eco-friendly electric vehicles due to its superior energy storage performance. Research on energy materials for lithium-ion batteries continues to be carried out intensively to date. To support this plan, this research has synthesized Lithium Lanthanum Titanate (LLTO, with a chemical formula Li0,5La0,5TiO3) from a combination of local lanthanum oxalate (95.296 % atomic of lanthanum), commercial lithium carbonate, and commercial titanium oxide through a low-cost and simple solid-state reaction. In this method, a two-stage calcination method was used, where the first step was carried out at a temperature of 800 °C for 8 h under atmospheric conditions while the second step was carried out at three different temperatures namely 1050 °C, 1150 °C and 1250 °C for 12 h under atmospheric conditions yielding 97.98, 98.141 and 92.328 weight % of Li0,5La0,5TiO3, respectively. The LLTO synthesized at the second calcination temperature of 1150 °C exhibited largest surface area and pore volume, randomly arranged particles, and pseudocapacitive feature as to provide a high specific capacity of 17,120 mAh g-1 (at a C-rate 0, 5 and near-zero potentials) and a high conductivity of 2.45 × 10 -2 S/cm. This LLTO holds promise for use as a low-potential anode in lithium-ion batteries.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library