Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Teny Handhayani
"Integrasi data gene expression dan DNA copy number berbasis kernel digunakan untuk menganalisis pola gen pada penyakit kanker payudara cell line. Clustering pada data integrasi dilakukan tanpa adanya informasi jumlah k cluster, teknik ini disebut fully unsupervised clustering. Pada penelitian ini, intelligent kernel K-Means dikembangkan dengan menggabungkan teknik intelligent K-Means dan kernel K-Means. Berdasarkan hasil eksperimen, nilai pada kernel RBF mempengaruhi jumlah cluster yang ditemukan. Hasil clustering dievaluasi menggunakan nilai R, global silhouette, indeks Davies-Bouldien, akurasi LS-SVM dan visualisasi. Hasil esperimen terbaik yaitu 3 cluster yang memperoleh akurasi LS-SVM sebesar 97.3% dengan standar deviasi 0.2%.

In this thesis, kernel based data integration of gene expression and DNA copy number would be utilized to analyze pattern of genes in breast cancer cell line. The cluster analysis on the integrated data will be conducted with has no prior information with regards the number of k clusters which is called fully unsupervised clustering technique. In this work, intelligent kernel K-Means is proposed by combining intelligent K-Means and kernel K-Means. From the experiments, the value of of Radial Basis Function (RBF) has important role for finding the optimal of number of cluster. The clusters those to be found will be evaluated based on global silhouette, Davies-Bouldien Index, LS-SVM accuracy and visualization. The experiment result show that three clusters are successfully to be found. Those clusters produce average accuracy of LS-SVM around 97.3 % with standard deviation 0.2 %."
Depok: Universitas Indonesia, 2013
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ranny
"ABSTRAK
Data genotype merupakan komponen yang penting pada bidang bioinformatik,
namun data genotype sulit diperoleh. Selain sulitnya proses yang harus dilakukan
untuk memperoleh data genotype, proses tersebut juga hanya dapat dilakukan oleh
para ahli yang memiliki kemampuan mengesktrak data genotype. Oleh karena hal
tersebut maka pada penelitian ini akan dibangun sebuah sistem yang dapat
membentuk rule phenotype-genotype yang digunakan untuk memprediksi
genotype berdasarkan rule tersebut. Pembentukan rule akan menggunakan metode
association rules mining (ARM). Salah satu algoritma yang menggunakan dasar
metode ARM adalah algoritma classification predictive base on association rule
(CPAR). Algoritma CPAR menjadi acuan untuk membentuk rule genotypephenotype
pada riset ini. Proses prediksi dilakukan dengan menghitung nilai
kemiripan antara phenotype pada rule dengan input phenotype yang akan
diprediksi genotype-nya. Phenotype dengan nilai batas kemiripan < 0.05 akan
merujuk pada rule genotype dan menjadi hasil prediksi. Evaluasi dilakukan
dengan menghitung akurasi berdasarkan ground truth. Hasil prediksi mencapai
akurasi 48% dengan standar deviasi sebesar 30%.

ABSTRACT
Genotype data is an important component in bioinformatics research;
unfortunately it is hard to get the data. An expert is also needed to extract the gene
sequence, so that the purpose of this research is to develop a system that can build
a genotype-phenotype rules that can predict the gene. This research use
association rules mining (ARM) to build the rules. Classification predictive base
on association rules (CPAR) is one of ARM algorithm. In this research, CPAR is
an algorithm to build the genotype-phenotype rule that can be used to predict the
genotype data. The predictive process is based on the similarity between
phenotype on the input and the rule. The input phenotype with similarity threshold
< 0.05 will refer to the genotype rule. The result will be evaluated by the accuracy
based on the ground truth. The average of the accuracy is 48% with standard
deviation is around 30%."
2013
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Betha Nurina Sari
"Indonesia menempati peringkat ke-4 di dunia sebagai negara dengan kasus tuberkulosis terbanyak, setelah India, China, dan Afrika Selatan (WHO,2012). Upaya yang dilakukan untuk mengendalikan kasus tuberkulosis adalah menerapkan strategi pengobatan Direct Observed Treatment Shortcourse (DOTS) dalam waktu 6-9 bulan. Membangun sebuah model agar dapat memprediksi hasil pengobatan tuberkulosis sangat dibutuhkan untuk membantu para tenaga medis untuk mensupervisi setiap pasien berdasarkan kondisinya dan status resikonya. Penelitian ini menggunakan metode dynamic bayesian networks. Metode dynamic bayesian networks juga digunakan untuk mengidentifikasi independensi variabel pada penyakit tuberkulosis.
Dalam penelitian software CaMML versi 1.4.1 digunakan untuk membangun struktur graf dynamic bayesian networks dan package Netica J-API yang berbasis Java untuk memvisualisasikan serta evaluasi graf. Evaluasi dilakukan dengan mengukur nilai akurasi dengan membentuk matriks konfusi dan menghitung logarithma loss. Tingkat akurasi struktur graf dalam memprediksi hasil pengobatan tuberkulosis sebesar 76,47% pada eksperimen 1 dan 100% pada eksperimen 2. Hal ini menunjukkan bahwa struktur graf yang terbangun dapat digunakan untuk model dalam mengidentifikasi keterkaitan variabel dalam data pengobatan TB. Selain itu, identifikasi hubungan variabel hasil pengobatan tuberkulosis dengan variabel data yang lain bersifat dependen atau indepeden dapat dilakukan melalui struktur dynamic bayesian networks dengan menggunakan algoritma d-separation.

Indonesia ranks 4th in the world as the country with the most cases of tuberculosis, after India, China, and South Africa (WHO, 2012). Efforts to control tuberculosis cases are implemented by the Direct Observed Treatment Shortcourse (DOTS) treatment strategy within 6-9 months. Building a model that can predict the outcome of tuberculosis treatment is needed to help the medical staff to supervise each patient based on the condition and status of the risk. This research use dynamic Bayesian networks method. Dynamic bayesian networks method is also used to identify independency of the variables on tuberculosis treatment data.
In this research, CaMML version 1.4.1 software is used to construct the graph of dynamic bayesian networks and Java based Netica-J API package is used to visualize and evaluate the graph. For evaluation, this research measure the value of accuracy obtained from a confusion matrix and calculate the logarithmic loss. In the first experiment, accuracy prediction of graph structure is 76,47% and in the second experiment the accuracy prediction is 100%. The result can be used as the model to identify the independency of variables in tuberculosis treatment data. In addition, identification of the relationship between tuberculosis treatment outcome variable and other variables are dependent or independent can be known using d-separation algorithm.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2015
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Edo Surya Utama
"Reposisi obat merupakan proses penting yang digunakan untuk meningkatkan proses penemuan obat, prosesnya dilakukan dengan memanfaatkan banyaknya sumber data dan tipe data seperti data dari dokumen dan data gene expression. Metode yang digunakan untuk mengolah dokumen adalah Text Mining, metode ini mengekstraksi data menjadi sebuah informasi yang berguna. Data gene expression adalah data hasil hibridisasi terhadap sekuen nukleotida dan dari keseluruhan data gene expression tersebut dipilih satu kelompok kecil gen yang merupakan gen yang aktif berkembang jika seseorang mengidap penyakit kanker. Metode pengelompokan yang diusulkan adalah metode Gene Shaving yang dapat mengidentifikasi himpunan bagian dari data gene expression dengan pola ekspresi yang koheren dan varian tinggi. Salah satu permasalahan di dalam mengolah data dengan tipe data yang berbeda adalah pengintegrasian seluruh data. Pendekatan yang diusulkan pada penelitian ini untuk integrasi data adalah Bayesian Network. Tujuan dari integrasi data adalah untuk memprediksi ikatan antara obat dan penyakit. Hasil prediksi ikatan obat dan penyakit yang didapatkan dari model integrasi data teks dan gene expression adalah 81,69%. Hasil ini meningkat dibandingkan dengan hasil prediksi ikatan obat dan penyakit dengan hanya menggunakan satu tipe data saja, di mana nilai prediksi ikatan obat dan penyakit dengan menggunakan tipe data teks adalah 70,58% dan nilai prediksi ikatan obat dan penyakit menggunakan tipe data gene expression adalah 66%.

Drug repositioning is an important process that is used to enhance the drug discovery process, the process is carried out by using the number of data sources and types of data such as data from gene expression data and documents. Text Mining is one of method to process of text, this method of data extraction into a useful information. Gene expression is the data from the hybridization of the nucleotide sequence and gene expression of the whole data set is selected a small group of genes that are active genes evolve if someone with cancer. Clustering method that proposed is Gene Shaving, that can identify subsets of genes with expression patterns are coherent and high variants. One of the problems in process of data with different data types is integration all of data. The approach proposed in this study for data integration is Bayesian Netwotk. The purpose of data integration is to predict the bond between the drug and disease. The result of drug and disease prediction bond obtained from the integration model was 81,69 %. These results increased compared with the predicted results by using one type of data, PPV`s values prediction of association drug and disease by text data type was 70,58 % whereas PPV`s values prediction of association drug and disease by gene expression data type was 66%."
Depok: Universitas Indonesia, 2015
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ratna Mufidah
"ABSTRAK
Analisis citra pap smear merupakan salah satu cara yang cukup aman, efektif, dan banyak digunakan untuk deteksi dini kanker leher rahim. Namun, analisis citra pap smear secara manual berdasarkan pengamatan mikroskopis dapat menghasilkan diagnosis yang tidak konsisten karena sebagian besar kriteria yang digunakan dalam pengamatan manual untuk membedakan sebuah sel normal atau tidak normal bersifat deskriptif dan relatif subyektif. Selain itu, pengamatan manual juga memerlukan waktu yang cukup lama dan rawan terjadi kesalahan. Beberapa penelitian terkait analisis citra pap smear secara otomatis telah dilakukan untuk menghemat waktu dan menghindari subyektifitas, diantaranya adalah segmentasi dan klasifikasi otomatis citra pap smear. Namun demikian, analisis pada citra pap smear berkualitas rendah dan citra pap smear multi-cell masih menjadi tantangan tersendiri. Untuk itu diperlukan sebuah metode yang mampu menghasilkan high level features karena high level features cenderung lebih konsisten dan tahan terhadap ganggguan yang terjadi pada citra. Pada penelitian ini, penulis mengusulkan metode Stacked Sparse Autoencoder SSAE sebagai salah satu pendekatan deep learning DL untuk memperoleh high level features dari low level features pada citra pap smear. High level fetaures yang dihasilkan oleh SSAE inilah yang nantinya menjadi fitur pembeda antar kelas. Sedangkan untuk citra multi-cell, penulis menerapkan teknik segmentasi yang menggabungkan teknik Maximally Stable Extremal Region MSER dengan Discrete Wavelet Transform DWT dan morphological operations untuk melakukan ekstraksi nukleus. Berdasarkan berbagai eksperimen yang dilakukan, hasil segmentasi pada kanal intensity dengan dimensi citra 72 72 mampu memperoleh hasil klasifikasi terbaik pada arsitektur SSAE 5184-324-162-2 yang dilatih menggunakan 10 epoch dengan nilai parameter sparsity 0.25. Dimana rata-rata nilai akurasi yang didapatkan sebesar 65,13 .

ABSTRACT
Analysis of pap smear image is a safe, effective and widely used method for early detection of cervical cancer. However, pap smear image analysis manually based on microscopic observation can produce an inconsistent diagnosis because most of the criteria used in the manual observation to distinguish a normal or abnormal cells are descriptive and relatively subjective. In addition, manual observation also require considerable time and error prone. Several studies concerning automatically pap smear image analysis has been done in order to save time and avoid subjectivity, such as automatic segmentation and classification of pap smear image. However, analysis of the low quality image and the multi cell image remains a challenge. Therefore, a capable method for generating high levels features is required because high level features tend to be more consistent and resistant to the disruption that occurs in the image. In this research, the authors propose Sparse Stacked Autoencoder SSAE method as an approach of deep learning DL to obtain a high level features from low level features of cytology image. High level fetaures generated by SSAE is will be the distinguishing feature between classes. As for the multi cell images, the author apply segmentation techniques that incorporate Maximally Stable Extremal Region MSER techniques with Discrete Wavelet Transform DWT and morphological operations to extract nuclei. Based on various experiment, the results of segmentation on the intensity channel with dimensions 72 72 able to obtain the best classification results on SSAE architecture 5184 324 162 2 trained using 10 epoch with sparsity parameter value 0.25. The best accuracy achieves 65.13 . "
2018
T51318
UI - Tesis Membership  Universitas Indonesia Library
cover
Jullend Gatc
"Human Immunodeficiency Virus (HIV) merupakan salah satu virus paling mematikan yang merusak sistem imun manusia melalui interaksi antar protein (PPI). Oleh karena itu, diperlukan suatu metode prediksi yang dapat melihat secara luas interaksi antar protein. Integrasi dari berbagai jenis data yang berbeda merupakan salah satu pendekatan untuk melihat interaksi protein secara luas. Dalam penelitian ini dibangun metode untuk prediksi PPI dengan mengintegrasikan gene expression dan ontology menggunakan Bayesian Network. Langkah pertama pada proses integrasi ini yaitu mencari nilai likelihood ratio berdasarkan evidence berupa nilai probabilistik PPI pada masing-masing dataset. Dimana likelihood ratio diperoleh dari kombinasi evidence menggunakan Bayesian Network. Kemudian hasil prediksi yang diperoleh diverifikasi menggunakan database NIAID sebagai Gold-Standard. Dari hasil keseluruhan eksperimen, model yang dibangun ini dievaluasi menggunakan Positive Predictive Value (PPV) dan memperoleh presisi mencapai 85.07%.

.Human Immunodeficiency Virus (HIV) is one of the most deadly virus that could damage the human immune system through protein interaction (PPI). Therefore, the extremely prediction method that determine interactions between proteins extensively is required. The integration of different data is one of the approaches to look at the proteins interactions. In this research, a prediction model of PPI by integrating gene expression and gene ontology using Bayesian Networks will be developed. The first step in the integration process is to find the value of likelihood ratio based on evidence from each dataset. Furthermore the likelihood ratio is obtained from a combination of evidence using Bayesian Networks. Finally, the prediction results will be verified using a database of NIAID as Gold-Standard. Overall, we use PPV as an evaluation method which achieve precision around 85.07%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2013
T-pdf
UI - Tesis Membership  Universitas Indonesia Library