Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Muhammad Ismail Bagus Setyawan
Abstrak :
Gasifikasi merupakan salah satu thermal-treatment yang dapat dilakukan untuk mengolah biomassa menjadi energi. Syngas merupakan produk utama dari proses gasifikasi, tetapi gasifikasi juga menghasilkan tar yang dapat mengganggu kesehatan manusia, lingkungan maupun peralatan berbahan bakar syngas. Untuk mengurangi kandungan tar, dilakukan modifikasi dalam gasifier dengan menambahkan inlet udara tambahan. Pendekatan model numerik yang digunakan di penelitian ini adalah pemodelan representatif partikel. Dalam penelitian ini, terdapat 2 model yang diusulkan untuk mengkarakterisasi gasifier: gasifier dibagi menjadi 2 kuasi-reaktor (model 1), dan inlet udara primer dan sekunder diasumsikan menjadi satu inlet udara (model 2). Variabel bebas yang digunakan adalah kondisi awal region konveksi campur dan equivalence ratio (ER). Dari hasil penelitian ini, fenomena yang dapat ditangkap di model 1 adalah persebaran temperatur, komposisi partikel, perubahan komposisi syngas terhadap ER dan komposisi tar dalam syngas, sedangkan fenomena yang dapat ditangkap di model 2 adalah komposisi syngas dengan standar deviasi 8,51. Penambahan densitas inlet udara yang berubah terhadap temperatur di kondisi awal region konveksi campur cocok digunakan untuk permodelan gasifier. Kandungan CO dan H2 mengalami peningkatan sedangkan kandungan CO2, CH4 dan H2O mengalami penurunan saat ER dinaikkan. Hasil penelitian menunjukkan model 1 perlu dievaluasi lebih lanjut agar dapat menghasilkan komposisi syngas yang lebih akurat. ......Gasification is one of thermal treatments that could convert biomass into energy. Syngas is the main product of gasification, but gasification also produces tar that could harm human health, environment, and syngas-fuelled equipment. To decrease tar content in syngas composition, modification is done to gasifier by adding secondary air inlet. The numerical approach used in this research was representative particle model (RPM). There were 2 proposed models to characterize gasifier: gasifier was divided into 2 quasi-reactors (model 1), and air inlets were assumed as just one air inlet (model 2). The independent variables were initial conditions of mixed convection region, and equivalence ratios (ER). The results showed model 1 could simulate gasification phenomena, as in temperature distribution, particle composition, change in syngas composition to ER and tar content, while model 2 could simulate the phenomenon as in syngas composition with standard deviation of 8.51. The addition of temperature-dependent air inlet density in gas species mass balance was found suitable for modelling gasifier. The research found CO and H2 contents were increasing, while CO2, CH4 and H2O contents were decreasing as the increase of ER. The research concludes model 1 needs to be further evaluated to approach syngas composition more accurately.
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mochamad Isa
Abstrak :
ABSTRAK
Ejektor adalah pompa dinamik yang tidak memiliki bagian yang bergerak, memiliki konstruksi yang relatif sederhana dan mudah dalam perawatan. Prinsip kerja sebuah ejektor adalah mendorong aliran fluida sekunder dengan memanfaatkan transfer momentum dan energi dari fluida penggerak berkecepatan tinggi (jet). Pada reaktor gasifikasi updraft, ejektor digunakan untuk mensirkulasikasikan aliran udara pada sistem. Simulasi ini bertujuan untuk melihat pengaruh variasi volume rate fluida penggerak keluaran nozzle dan output diameter ejektor pada sebuah ejektor udara terhadap aliran fluida pada sistem reaktor gasifikasi updraft. Hasil dari simulasi ini menunjukan peningkatan volume rate nozzle dan diameter output nozzle ejektor pada batas tertentu sebanding dengan besar volume rate yang tersikulasi.
ABSTRACT
Ejector is the dynamic pump that has no moving parts, has a relatifly simple construction and easy in maintenance. The working principle of an ejector is to encourage secondary fluid flow by utilizing the momentum and energi transfer from high-speed fluid propulsion (jet). In updraft gasification reaktors, ejector used to recirculated airflow in the sistem. This simulation aims to see the effect of volume variation rate of the motif flow rate output and the output diameter of the ejector nozzle on an air ejektor to the flow of fluid in the updraft gasification reactor sistem. The results of this simulation shows the increase in the volume rate and nozzle diameter ejektor nozzle output to a certain extent comparable to the large volume recirculated rate.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1384
UI - Skripsi Open  Universitas Indonesia Library
cover
Steven Darmawan
Abstrak :
Kebutuhan akan energi yang semakin meningkat menjadikan turbin gas mikro berkembang menjadi alternatif pembangkit daya yang dapat digunakan. Turbin gas Mikro Proto X-2a merupakan turbin gas mikro dengan satu-tingkat kompresor-turbin dimana pembangkitan daya dilakukan melalui aplikasi sebuah runner cross-flow yang dihubungkan ke generator. Runner cross-flow ini digerakkan oleh udara pada sisi masuk kompresor. Pada operasinya, vorteks resirkulasi terbentuk pada bagian dalam runner cross-flow. Karena besaran vorteks ini mempengaruhi unjuk kerja dari runner cross-flow, analisis yang lebih baik diperlukan, yang juga dapat digunakan dan sebagai dasar pengembangan. Perilaku vorteks resirkulasi direpresentasikan lebih detail, dengan menggunakan metode CFD dengan menggunakan model turbulen RNG k-ε. Karakteristik vorteks resirkulasi yang diiringi dengan penurunan temperatur pada bagian dalam runner cross-flow tersebut sesuai untuk penggunaan model turbulen RNG k-ε. Perubahan temperatur tersebut mempengaruhi aliran resirkulasi yang terjadi secara molekular, selain secara konvektif. Pada kondisi ini, analogi Reynolds tidak lagi sesuai untuk digunakan. Oleh karena itu, pemilihan bilangan turbulen Prandtl turbulen ? inverse (α) yang mampu merepresentasikan fenomena aliran tersebut menjadi penting. Berdasarkan konsep difusivitas pada aliran turbulen, konsep rasio viskositas molekukar dan turbulen pada model turbulen RNG k-ε, pada penelitian ini, nilai α divariasikan menjadi 1; 1,1; 1,2 dan 1;3. Simulasi CFD pada runner cross-flow dilakukan secara tiga-dimensi dengan menggunakan CFDSOF. Jumlah mesh optimum 300 x 147 x 3 dari hasil uji ketergantungan mesh digunakan dengan jenis mesh Body-fitted-coordinate (curved-linear). Eksperimen dilakukan pada sistem turbin gas mikro Bioenergi Proto X-2a yang telah dihubungkan dengan runner cross-flow dan sebuah alternator DC. Parameter karakteristik turbin gas mikro didapatkan, bersama dengan kecepatan poros dan beda temperatur pada casing runner cross-flow. Data hasil eksperimen (data_1, data_2 dan data_3) secara berturut-turut menghasilkan kecepatan poros runner (N3) dan beda temperatur pada sisi masuk dan keluar (ΔTCR) sebesar 1330 rpm (ΔTCR1 = 0,424oC) , 604 rpm (ΔTCR2 = 0,874oC) dan 659 rpm (ΔTCR3 = 0,936oC). Ketiga data ini dianalisis secara lebih detail dengan CFD. Hasil eksperimen dengan data_3 dengan ΔTCR paling besar menunjukkan bahwa pada kondisi tersebut runner sudah terbebani oleh generator listrik, sistem turbin gas mikro sudah menghasilkan daya listrik 0,54 kWh. Kondisi ini dicapai pada kecepatan kompresor (N1) 78.890 rpm dengan rasio tekanan 1,4 pada efisiensi kompresor 67% dan laju bahan bakar Diesel 2,314 g/s, dengan daya termal yang dihasilkan runner cross-flow sebesar 230 Watt. Secara umum, hasil simulasi CFD menunujukkan bahwa vorteks resirkulasi terbentuk di bagian dalam runner cross-flow pada zona VI hingga VIII (dari sudu jalan ke-14 hingga ke-18).Variasi nilai α yang divariasikan menjadi 1; 1,1; 1,2 dan 1,3 efektif pada beda temperatur runner ΔTCR yang paling besar (ΔTCR3 = 0,936oC) dengan parameter hasil simulasi kecepatan-w dan temperatur statik pada zona resirkulasi (zona VI ? VIII) koordinat (i,j,k = 37-100; 57; 2), pada daerah dekat dinding sudu arah radial pada sudu ke-14 hingga sudu ke-18. Pada data hasil eksperimen lain, variasi nilai α tidak signifikan pada koordinat tersebut. Dari berbagai analisis yang telah dilakukan pada runner cross-flow, terutama pada aliran resirkulasi, besaran bilangan Prandtl turbulen - inverse (α) dapat direkomendasikan nilai optimum α = 1,1. Bilangan α tersebut menjadikan rasio viskositas molekular dan viskositas turbulen sebesar 𝜈0𝜈𝑇=0,8394, yang paling optimum dalam merepresentasikan aliran resirkulasi yang terjadi pada bagian dalam runner cross-flow dengan menggunakan model turbulen RNG k-ε. Hasil ini dapat digunakan untuk analisis dan pengembangan perancangan runner cross-flow. Increasing of energy needs has lead the development of micro gas turbine as an alternative power generator. The Proto X-2a Bioenergy Micro Gas Turbine is a single-stage compressor-turbine, at which the electricity power generated by application of a cross-flow runner coupled with a DC alternator. This cross-flow runner is driven by inlet compressor air ?a sub-pressure application. Recirculation vortexes which occur during operation inside the cross-flow runner affect the performance ? the cross-flow runner and the Proto X-2a in general. For performance analysis and design development reasons, this condition has triggered more detailed analysis of this type of vortex of the cross-flow runner numerically with CFD method with RNG k-ε turbulence model. Characteristics of recirculation vortexes carried with slighty-decreased temperature inside the cross-flow runner suitable with RNG k-ε turbulence model. Furthermore, the temperature difference inside the cross-flow runner affects the recirculation vortexes since the molecular transport also dominant, beside the convective transport. During this condition, selection of appropriate inverse-turbulent Prandtl number (α) is important to represent the recirculation vortexes. Inverse-turbulent Prandtl numer (α) varied to 1; 1,1; 1,2 and 1,3 in this research, based on turbulence diffusivity theory, turbulent and molecular viscosity ratio and basic concept of RNG k-ε turbulence model. The CFD simulation done three-dimensionaly with CFDSOF. The mesh-depencency test resulting the optimum mesh was 300 x 147 x 3 cells. The mesh was body-fitted-coordinate (curved-linear type). Experimental data from the Proto X-2a Bioenergy Micro Gas Turbine including the temperature difference and shaft rotational speed of the cross-flow runner is used to CFD simulation. Electricity power generated by a DC alternator coupled to the cross-flow runner is also used to analyzed as a part of the system and temperature difference effect to the runner. Three experimental data (data_1, data_2 anda data_3) were detailed-numerically analyze. The datas generated the cross-flow runner shaft speed (N3) and temperature difference at cross-flow runner casing; N3 = 1330 rpm (ΔTCR1 = 0,424oC) , N3 = 604 rpm (ΔTCR2 = 0,874oC) dan N3 = 659 rpm (ΔTCR3 = 0,936oC) respectively. Data_3 shows the optimal condition of the system, at which the compressor shaft velocity (N1) was 78.890 rpm, pressure ratio at 1,4, efficiency of 67%, and generated 0,54 kW electricity power with 2,314 g/s Diesel fuel flow rate. At this condition, the cross-flow runner generated 230 W. Recirculation vortexed shows by CFD simulation occur at the inner side of the cross-flow runner, at VIth ? VIIIth zones (14th ? 18th blade) in general for all data. The CFD simulation shows that variation of α effective at data_3, where the temperature difference is the largest (ΔTCR3 = 0,936oC), while the others data shows almost no difference at α variations. More detailed analysis done at recirculating vortexed ? dominated area at i;j;k = 37-100; 57; 2 for data_3, near the radial blade wall with two most affective parameters; w-velocity and static temperature to represent the recirculation flow at recirculation zone. The optimum α is 1,1 since this α variation shows the most logic results compared to the other variation of α. Therefore, for CFD simulation with RNG k-ε turbulence model to a cross-flow runner, is is recomended to use α that represent better recirculation flow, and the optimum ratio between molecular and turbulent viscosity is now 𝜈0𝜈𝑇=0,8394. This result is can be used for both analysis and future design development of cross-flow runner.>/i>
Depok: Fakultas Teknik Universitas Indonesia, 2015
D2092
UI - Disertasi Membership  Universitas Indonesia Library
cover
Supriyadi
Abstrak :
Berbagai upaya meningkatkan kapasitas adsorpsi hidrogen pada Carbon Nanotubes CNT banyak dilakukan diantaranya melalui: optimasi struktur, pengaturan unsur doping serta modifikasi pada CNT sehingga diperoleh CNT dengan karakteristik baru, atau material dengan struktur baru. Jenis material nanostruktur yang sekarang banyak menarik perhatian adalah Boron Carbide, Boron Nitride dan Carbon Nitride. Pada penelitian ini model struktur yang dibahas adalah Single-walled Triazine Nanotube SWTNT, SWTNT dengan substitusi Boron, Boron Substituted-Single Walled Triazine Nanotube SWBTNT serta SWTNT substitusi boron dengan doping lithium: Lithium Doped on Boron Substituted Single-walled Triazine Nanotube SWBTLi2NT yang secara struktur maupun aplikasi untuk penyimpanan hidrogen belum banyak dibahas. Pada tahap awal penelitian dilakukan kajian semi empirik untuk mendapatkan diamater optimum untuk menyimpan hidrogen. Diperoleh diameter optimum pada diameter kurang dari 5? atau pada diameter antara 11 ndash; 14 ?. Berdasarkan hasil tersebut selanjutnya dilakukan simulasi adsorpsi hidrogen Single-walled Carbon Nanotube SWCNT dan berbagai material nanostruktur dengan chiralitas 18, 0. Analisa termodinamik yang paling penting dilakukan adalah perhitungan nilai luas permukaan spesifik spesific surface area/SSA. Dari hasil perhitungan berbagai model material diperoleh nilai SSA berturut-turut 2600, 2730 dan 2828 dan 2458 m2/g. Dengan demikian maka dapat diduga modifikasi struktur dengan substitusi/doping logam pada material berbasis karbon akan meningkatkan kapasitas adsorpsi hidrogen. Modifikasi tersebut juga mengidentifikasikan adanya peningkatan energi adsorpsi hidrogen secara signifikan yang besarnya berturut-turut 1,2; 1,97; 2,25 dan 9,7 kkal/mol. Simulasi dinamika mulekular MD memberikan hasil kapasitas adsorpsi pada temperatur ruang berturut-turut sebesar 1,59; 2,17; 2,31 dan 6,31 wt , di tekanan 120 atm. Pada temperatur 233 K kapasitas adsorpsi meningkat menjadi 2,26; 2,96; 3,23 dan 6,82 wt serta 6,1; 6,84; 7,73 dan 8,52 wt pada temperatur 77 K. Untuk memverifikasi hasil simulasi dilakukan perbandingan dengan regresi model adsorpsi isotermal, perbandingan dengan hasil eksperimen, perbandingan dengan perhitungan Density Functional Theory DFT , simulasi Grand Canonical Monte Carlo GCMC serta hasil simulasi MD dari hasil yang telah terpublikasi. Perbandingan dengan perhitungan semi empirik maupun eksperimen, secara umum hasil simulasi lebih tinggi sekitar 10 ndash; 20 . Dengan hasil DFT dan GCMC, hasil MD lebih rendah 10 ndash; 20 dan dengan hasil MD peneliti lain perbedaannya berkisar 5-10. Hasil MD juga menunjukkan adanya kesesuaian dengan model adsorpsi isotermal Langmuir, model isotermal Sips maupun model isotermal Toth dengan nilai koefisien determinasi di atas 0,99 pada temperatur 298 K, di atas 0,95 pada temperatur 233 K dan di atas 0,85 pada temperatur 77 K. Analisa monolayer coverage menunjukkan bahwa tanpa doping lithium daerah yang sanggup dicover tidak melebihi 30 , 40 dan 55 masing-masing pada temperatur 298, 233 dan 77 K. Dengan doping lithium coveragenya naik hingga 300. Dicapai coverage hampir 100 pada temperatur 298, 233 dan 77 K berturut-turut pada tekanan 100, 30 dan 5 atm. Berbagai ukuran termodinamik menunjukkan bahwa tanpa modifikasi sulit bagi SWCNT memenuhi kriteria untuk aplikasi penyimpanan hidrogen. Langkah modifikasi yang dilakukan melalui substitusi dan doping logam merupakan peta jalan yang mengarah untuk didapatkannya material baru yang dapat memenuhi target Departemen Energi Amerika Serikat US DoE . Dengan demikian SWBTLi2NT dapat diusulkan sebagai material jenis baru yang memenuhi berbagai persyaratan untuk aplikasi hydrogen storage. ......Various eff orts have been conducted intensively to increase the hydrogen adsorption capacity of Carbon Nanotubes CNT , such as structure optimization, doping element arrangement and structure modification to obtain new characteristics of CNTs, or newly acquired materials. New types of materials that now attract a lot of attention are Boron Carbide, Boron Nitride and Carbon Nitride. The structural models discussed in this study are Single walled Triazine Nanotube SWTNT, Boron Substituted Single walled Triazine Nanotube SWBTNT and Single walled Triazine Nanotube with substitution of boron and lithium doping SWBTLi2NT which structurally and in application for hydrogen storage has not been much discussed. Based on semi empirical study, it is obtained that the optimum diameter to store hydrogen is diameter less than 5 or diameter between 11 14. From this results, a Single walled Carbon Nanotube SWCNT simulation was performed on chirality 18.0 . The choice of chirality is to assure three dimensional symmetrical properties, when the material type is replaced by a more complex type of material. Based on the results, further simulations were made on various material variations with 18, 0 chirality The first thermodynamic analysis performed was calculation of SSA value and in various models the material obtained the value of SSA respectively of 2600, 2730 and 2828 and 2458 m2 g. Thus it can be predicted that structural modification by substitution and doping on carbon based materials will increase the hydrogen adsorption capacity. The modification also identified a significant increase in hydrogen adsorption energy of 1.2, 1.97, 2.25 and 9.7 kcal mole. The molecular dynamics simulation gives the result of adsorption capacity at room temperature is respectively of 1.59, 2.17, 2.31 and 6.31 wt . At temperature of the adsorption capacity increased to 2.26, 2.96, 3.23 and 6.82 wt while 6.1, 6.84, 7.73 and 8.52 wt at a temperature of 77 K. To verify the simulation results, a comparison with the regression of the isothermal adosrpsi model, the comparison with the experimental results, the comparison with Density Functional Theory DFT calculations, Grand Canonical Monte Carlo GCMC simulations and MD simulation results from published reports were hold. In general comparison with semi empirical and experimental calculations, the simulation result is higher about 10 20 . With DFT and GCMC results, MD results were lower about 10 20 and with the other MD results about 5 10 . The MD results also indicate compatibility with the Langmuir isothermal model of adsorption, Sips Langmuir isothermal model and Toth Langmuir isothermal model with a coefficient of determination above 0.99 at a temperature of 298 K, above 0.95 at a temperature of 233 K and above 0.85 at a temperature of 77 K. The monolayer coverage analysis showed that without lithium doping the covered area did not exceed 30 , 40 and 55 respectively at temperatures of 298, 233 and 77 K. With lithium coverage doping rise up to 300 and achieved coverage of nearly 100 at 298, 233 and 77 K temperatures at 100, 30 and 5 atm pressure, respectively. The various thermodynamic properties showed that without modification it is to difficult for SWCNT to meet the criteria for hydrogen storage applications. The modification step made through substitution and metal doping is a roadmap that leads to the discovery of new materials that can meet the US Department of Energy US DoE targets. Thus SWBTLi2NT can be proposed as a new type of material that meets various requirements for hydrogen storage applications.
Depok: Fakultas Teknik Universitas Indonesia, 2017
D2287
UI - Disertasi Membership  Universitas Indonesia Library
cover
Irene Margeretha
Abstrak :
ABSTRAK
Kajian agen antikaries propolis Trigona spp. telah dilakukan dengan pendekatan analisis kimia dipandu dengan bioassay. Metode ekstraksi berbantuan gelombang mikro (MAE) paling efisien dibanding metode maserasi dan refluks. Profil kimia EEP menunjukkan komposisi kimia yang kompleks dan didominasi oleh komponen dengan kepolaran rendah. Fraksi kloroform merupakan fraksi potensial sebagai agen anti karies dengan karakteristik: MIC = 50 ? 100 g/ml, MBC = 400 ? 800 g/ml, adherence = 6,02% (penurunan sekitar 60% relatif terhadap media tanpa fraksi kloroform), dan dengan komposisi kimia didominasi oleh senyawa bernitrogen.
ABSTRACT
Study of anticaries agents in propolis Trigona spp. has been done using bioassayguided chemical analysis approach. The microwave-assisted extraction (MAE) was the most efficient compared to maceration and reflux methods. Chemical profile of EEP showed a complex chemical composition and dominated by low polarity components. The fraction of the chloroform has a potential as an anticaries agent with its characteristics as follows: MIC = 50 ? 100 g/ml, MBC = 400 ? 800 g/ml, adherence characteristic = 6.02% (approximately 60% decrease relative to the media without chloroform fraction) and its chemical composition dominated by nitrogenous compounds.
Depok: 2012
D1344
UI - Disertasi Open  Universitas Indonesia Library