Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Tania Surya Utami
Abstrak :
ABSTRAK Gas nitrogen oksida antara lain adalah NO, NO2, dan N2O mempunyai peranan penting dalam perubahan kimia pada lapisan ozon. Dinitrogen monoksida (N2O) merupakan gas rumah kaca yang harus mendapat perhatian karena memiliki potensi pemanasan global yang besar. Biofiltrasi adalah proses pengolahan polutan gas di dalam suatu unggun medium, dan polutan akan mengalami degradasi oleh mikroorganisme. Penelitian ini bertujuan untuk mengembangkan sistem biofilter dalam mereduksi emisi gas buang N2O melalui pemanfaatan kompos sebagai medium filter, dengan melakukan kajian pada parameter-parameter operasi biofilter serta penyusunan model biosorpsi dan biodegradasi. Hasil penelitian menunjukkan bahwa dari aspek karakteristik medium dan kinerja medium sebagai filter dalam mereduksi polutan gas N2O, medium kompos berbasis kotoran kambing lebih baik daripada medium kompos berbasis kotoran sapi, dengan rata-rata efisiensi reduksi mencapai 65% dan stabil hingga 200 jam pada kedalaman medium 100 cm, laju alir gas N2O 88 cm3/menit, dan kandungan air 60%. Proses biofiltrasi gas N2O dengan medium kompos dapat dimodelkan dengan baik oleh model kinetika berbasis mekanisme Michaelis-Menten Adsorpsi, dengan parameter kinetika VMax, KM, dan KN2O berturut-turut adalah 14,847 g/m3.jam ; 0,131 g/m3 ; 1,343 x 10-3 m3/g untuk medium kompos ruah, dan 461 g/m3.jam ; 558 g/m3 ; 0,22 m3/g untuk medium pelet kompos.
ABSTRACT Nitrogen oxides i.e. NO, NO2, and N2O have an important role in chemical changes in the ozone layer. Nitrous oxide (N2O) is a greenhouse gas that should get attention because it has a great potential for global warming. Biofiltration is the processing of gas pollutants in a medium bed, and pollutants will be degraded by microorganisms. This research aims to develop a biofilter system to reduce N2O emissions using compost as a filter medium, by studying the parameters of biofilter operation as well as the developing of biosorption and the biodegradation model. The results show that in term of medium characteristics and the performance in reducing N2O, goat manure-based compost medium is better than cow manure-based compost medium, with an average removal efficiency reached 65% and stable up to 200 hours at medium depth of 100 cm, N2O gas flow rate of 88 cm3/minute, and water content of 60%. Biofiltration of N2O with manure-based compost medium can be well modeled by the kinetic based model of Michaelis-Menten for adsorption mechanism, with kinetics parameters VMax, KM, and KN2O 14,847 g/m3.hour ; 0,131 g/m3 ; 1,343 x 10-3 m3/g for bulk compost, and 461 g/m3.hour ; 558 g/m3 ; 0,22 m3/g for pelletized compost.
Depok: Fakultas Teknik Universitas Indonesia, 2011
D1338
UI - Disertasi Open  Universitas Indonesia Library
cover
Said Zul Amraini
Abstrak :
ABSTRAK
Enzim selulase digunakan secara luas dalam industri bioetanol, pulp dan kertas, tekstil, pakan dan deterjen, namun hampir 99 kebutuhan enzim domestik dipenuhi oleh impor. Salah satu biomassa lignoselulosa yang memiliki potensi tinggi produksi selulase adalah Tandan Kosong Sawit TKS karena kandungan selulosanya cukup tinggi, yaitu mencapai 41,3 ndash;46,5 w/w . Metode konvensional untuk produksi enzim selulase adalah menggunakan jamur, namun diketahui bahwa bakteri juga dapat memproduksi enzim selulase dengan laju yang lebih cepat. Tujuan dari penelitian ini adalah untuk mendapatkan kondisi optimal proses produksi selulase dari bakteri rekombinan E. coli EgRK2 berbasis Tandan Kosong Sawit serta melakukan analisis keekonomian berdasarkan simulasi SuperPro Designer. Penelitian ini juga mempelajari bagaimana produksi enzim selulase oleh isolat Bacillus sp. RK2 dan rekombinan E. coli EgRK2 dengan melakukan penentuan waktu inkubasi, suhu operasi, pH optimum dan kinetika reaksi enzimatik. Didapat bahwa waktu optimum produksi selulase untuk kedua jenis isolat adalah 24 jam, dengan pH dan suhu optimum untuk rekombinan EgRK2 adalah 7 dan 40 C. Setelah ekstraksi enzim, diperoleh nilai pH dan suhu optimum untuk selulase dari Bacillus sp. RK2 sebesar 6,5 dan 50 C, sementara selulase dari E. coli EgRK2 adalah sebesar 6,5 dan 60 C. Nilai Km dan Vmax selulase dari Bacillus sp. RK2 untuk degradasi CMC adalah sebesar 0,021 ?mol/ml dan 1,631 mol/ml/min dan dari rekombinan E. coli EgRK2 adalah sebesar 0,097 ?mol/ml dan 2,739 mol/ml/min. Sementara, nilai Km dan Vmax selulase pada degradasi TKS adalah sebesar 0,704 ?mol/ml dan 0,943 mol/ml/min untuk Bacillus sp. RK2 dan 0,26 ?mol/ml dan 1,934 mol/ml/min untuk rekombinan E. coli EgRK2. Penelitian ini juga melakukan simulasi perancangan pabrik serta perhitungan ekonomi produksi enzim selulase di Indonesia berbasis Tandan Kosong Sawit dengan simulasi menggunakan software SuperPro v9.0. Simulasi dilakukan sebagai estimator nilai kelayakan proses dan kelayakan pabrik. Data diambil dari literatur maupun hasil penelitian laboratorium. Berdasarkan simulasi dan analisis dari softwarre SuperPro Designer 9.0, diperoleh, kapasitas produksi sebesar 1191 kg/batch akan menghasilkan nilai ROI, Payback Period, IRR dan NPV berturut-turut sebesar 32,70 , 3,06 tahun, 38,98 dan 21.345.000 USD.
ABSTRACT
Cellulase enzymes were widely used in the bioethanol industry, pulp and paper, textiles, feed and detergents. Unfortunely, they are still imported as much as 99 for industrial need in Indonesia. Base on the previous research, lignocellulosic biomass of OPEFB was known as a potential cellulose. The content of cellulose in OPEFB achieves 41.3 ndash 46.5 w w . Fungi was used also for production of cellulose. However, E. coli bacteria has known faster production rate of of cellulose than fungi. So, this research focuse on optimally cellulose production base on OPEFB using recombinant of E. coli EgRK2 and Bacillus sp. RK2 by determine of incubation time, temperature, optimally pH and kinetics of enzymatic reaction. Design base on simulation was conducted also by SuperPro Designer. The result showed that optimally cellulose production for E. coli EgRK2 and Bacillus sp. RK2 were 24 hours, with the optimum pH and temperature for recombinant E. coli EgRK2 were 7 and 40 C. After enzyme extraction, the optimum pH and temperature of Bacillus sp. RK2 and also E. coli EgRK2 were 6.5 at 50 C and 6.5 at 60 C, respectively. but it is known that bacteria can also produce cellulase enzymes at a faster rate. The Km and Vmax cellulase values of Bacillus sp. RK2 and E. coli EgRK2 for degradation of CMC were 0.021 mole.ml 1 and 1.631 mole.ml 1.min 1 0.097 mole.ml 1 and 2.739 mole.ml 1.min 1 respectively. Km and Vmax cellulase values of Bacillus sp. RK2 and E. coli EgRK2 for degradation of OPEFB were 0.704 mole.ml 1 and 0.943 mole.ml 1.min 1 0.26 mole.ml 1 and 1.934 mole.ml 1.min 1, respectively. The result of simulation design by SuperPro Designer including on economic evaluation of celluase enzyme production in Indonesia were acvieved. Result showed that capacity of cellulase production was 1191 kg.batch 1, while values of ROI, payback period, IRR and NPV were 32.70 3.06 years 38.98 and 21,345,000 USD, respectively.
2017
D2408
UI - Disertasi Membership  Universitas Indonesia Library
cover
Yustinah
Abstrak :
Plastik yang banyak digunakan saat ini bersifat nonbiodegradable, sehingga limbah plastik menjadi sulit dihancurkan dan menjadi polutan. Upaya untuk mengatasi masalah limbah plastik adalah dengan membuat material plastik yang mudah diuraikan oleh alam. Polyhydroxybutyrate (PHB) adalah salah satu jenis plastik biodegradable yang ramah lingkungan. PHB dapat dihasilkan oleh bakteri pada saat fermentasi. Pada penelitian ini proses fermentasi menggunakan bakteri Bacillus cereus strain suaeda B-001. Sumber karbon yang digunakan dalam fermentasi adalah glukosa murni dan hidrolisat tandan kosong kelapa sawit (TKKS). TKKS diubah menjadi gula reduksi melalui proses hidrolisis asam. Selanjutnya pembentukkan PHB dengan fermentasi menggunakan hidrolisat TKKS sebagai sumber karbon. Kemudian ekstraksi PHB dari dalam sel biomass untuk mendapatkan PHB murni. Hasil penelitian pada sumber karbon glukosa murni 15 g/L mendapatkan berat sel kering (CDW) sebesar 2,62 g/L dan kadar PHB sebesar 43,1 %CDW. Sedangkan pada sumber karbon hidrolisat TKKS 14,3 g/L menghasilkan berat sel kering sebesar 2,5 g/L dan kadar PHB 40 %CDW. Hasil analisa FTIR dan H NMR terhadap produk PHB menunjukkan gugus fungsi dan struktur yang mirip dengan PHB standart. Hasil analisis dengan DSC didapatkan PHB mempunyai titik leleh pada 171,52 oC, temperatur transisi pada -17,37 oC dan ΔH sebesar 105,16 J/g.
The effort to overcome the problem of plastic waste is to make plastic material that is easily broken down by nature. Polyhydroxybutyrate (PHB) is one type of biodegradable plastic that is environmentally friendly. PHB can be produced by bacteria during fermentation. In this study the fermentation process uses Bacillus cereus strain suaeda B-001. The carbon sources used in fermentation are pure glucose and oil palm empty fruit bunches (OPEFB) hydrolyzates. OPEFB is converted into reducing sugars through an acid hydrolysis process. Furthermore, the formation of PHB by fermentation using OPEFB hydrolyzate as a carbon source. Then extraction of PHB from biomass cells to obtain pure PHB. The results of experiment using 15 g/L of pure glucose as a carbon source obtained dry cell weight (CDW) of 2.62 g/L and accumulated PHB of 43.1% CDW. Whereas if using OPEFB hydrolyzate 14.3 g / L as a carbon source produced CDW of 2.5 g/L and accumulated PHB of 40% CDW. The results of FTIR and H NMR analysis of PHB products show functional groups and structures similar to standard PHB. Analysis with DSC found the melting point of PHB at 171.52 oC, the transition temperature of PHB at -17.37 oC and PHB had ΔH 105.16 J/g.
Depok: Fakultas Teknik Universitas Indonesia, 2019
D2616
UI - Disertasi Membership  Universitas Indonesia Library
cover
Muhammad Nizami
Abstrak :
Lapangan gas Natuna Timur merupakan lapangan gas terbesar di Asia Tenggara yang belum berproduksi dan memiliki cadangan total mencapai 222 triliun kaki kubik (TCF) dengan kandungan CO2 yang tinggi mencapai 71% sehingga jumlah hidrokarbon yang dapat dimanfaatkan mencapai 46 TCF. Tingginya kandungan CO2 pada lapangan gas Natuna menyebabkan adanya beberapa isu kritis yang menghambat proses pengembangan lapangan sehingga diperlukan penanganan khusus proses pemisahan CO2 dan CH4 menjadi LNG, produk kimia (metanol, blue methanol, dimetil eter, asam format, dan asam asetat), dan bahan bakar sintesis (synfuel dan blue synfuel) melalui teknologi carbon capture, utilization, and sequestration (CCUS). Penelitian ini bertujuan untuk mendapatkan strategi pengembangan pada lapangan gas Natuna Timur melalui simulasi proses dan optimisasi multi-objektif superstruktur dari gas bumi kaya CO2 menjadi LNG, produk kimia dan bahan bakar dengan fungsi objektif: maksimum net profit dan minimum emisi GHG. Simulasi proses dilakukan dengan menggunakan piranti lunak Aspen HYSYS v11. Sedangkan optimisasi multi-objektif superstruktur model mixed integer non-linear programming (MINLP) dengan menggunakan piranti lunak General Algebraic Modeling System (GAMS) dan solver Standard Branch and Bound (SBB). Hasil dari optimisasi multi-objektif superstruktur menunjukkan bahwa produk optimum yang terpilih pada tahun 2022 adalah LNG, metanol, dimetil eter, asam format, dan asam asetat dengan annual net profit sebesar 27,75 juta $/tahun dan emisi GHG sebesar 6,91 juta ton CO2-eq per tahun. Pada periode 2022 hingga 2060, besar annual net profit meningkat dengan pertumbuhan rata-rata sebesar 18,58% per tahun, dan emisi GHG mencapai puncak pada tahun 2030 sebesar 8,26 juta ton CO2-eq per tahun kemudian menurun sampai dengan tahun 2060. Blue methanol, metanol, LNG, synfuel, asam format dan asam asetat terpilih sejak tahun 2040. Oleh karena itu, pathway yang terpilih bisa menjadi strategi pengembangan rendah karbon untuk memonetisasi sumber gas bumi kaya CO2 di lapangan gas Natuna Timur di masa depan. ......The East Natuna gas field is the largest in Southeast Asia that is not yet producing and has a total reserve of 222 trillion cubic feet (TCF) with a high CO2 content so that the amount reaches 71%, which can be utilized to reach 46 TCF. The high CO2 content in Natuna gas causes several critical things needed for the development process, so a unique process is needed for a more complex CO2 and CH4 separation and conversion into LNG, chemical products, and fuels through carbon capture, utilization, and sequestration (CCUS) technology. This study aims to obtain a development strategy in the East Natuna gas field through process simulation and multi-objective optimization of the superstructure from CO2-rich natural gas into LNG, chemical products, and fuels with objective functions: maximum net profit and minimum GHG emissions. Process simulation was carried out using Aspen HYSYS v11 software. Meanwhile, multi-objective superstructure with mixed integer non-linear programming (MINLP) model using General Algebraic Modeling System (GAMS) software and Standard Branch and Bound (SBB) solver. The results of the multi-objective superstructure optimization show that the optimum products selected in base year (2022) are LNG, methanol, dimethyl ether, formic acid, and acetic acid, with an annual net profit and annual net GHG emission of 27.75 million $/year and 6.91 megatons of CO2-eq per year, respectively. In the period 2022 and 2060, the annual net profit will increase at a CAGR of 18.58% per year, and GHG emissions will peak in 2030 (8.26 million tons CO2-eq per year) and decline until 2060. Blue methanol, methanol, LNG, formic acid, acetic acid, and synfuel has been selected as the optimum product since 2040. Therefore, this could be a low-carbon development strategy to monetize CO2-rich natural gas sources in the East Natuna gas field in the future.
Depok: Fakultas Teknik Universitas Indonesia, 2023
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library