Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Ering Poernomo Setianto
"Tesis ini menguraikan pengembangan dan pengukuran standar frekuensi pada 88 THz yang didasarkan pada garis E dari transisi P(7) CH4. Untuk maksud tersebut kita menggunakan sebuah laser yang frekuensinya digeser menggunakan efek Zeeman untuk mencapai garis E dari CH4.
Laser He-Ne yang digunakan dalam eksperimen ini dibangkitkan menggunakan pelepasan (discharge) RF, yang menghasilkan keluaran laser berderau rendah. Kesesuaian impedansi antara penguatan RF dan laser He-Ne dicapai dengan sangat efektif menggunakan sebuah trafo resonansi.
Dari tiga komponen efek Zeeman hanya komponen a digunakan sebagai garis penguat laser dan dua komponen lainnya 6+ dan 7C ditapis oleh uap Methylbromide dan candela Brewster, sehingga laser RF He-Ne berosilasi pada frekuensi tunggal yang dapat diatur dan keluaran laser berderau rendah.
Untuk meningkatkan rasio SIN dari pendeteksi spektrum garis absorpsi E, telah dikembangkan sistim dispersi tersaturasi menggunakan laser He-Ne bermode ganda. Sistim ini bekerja sebagai pendeteksi heterodyne internal untuk merekam frekuensi denyut (beat). Sistim ini memperbaiki rasio SIN mencapai faktor 4 sampai 5 kali.
Dengan menggunakan sistim tersebut telah dilakukan pengamatan ketergantungan frekuensi pusat garis E terhadap parameter kerja seperti: power laser, lebar modulasi laser dan tekanan methane. Pergeseran frekuensi diukur menggunakan sistim Offset lock dengan komponen pusat dari hyperfineyang terurai sebagai referensi yang stabil. Diperoleh untuk perubahan parameter kerja tertentu pergeseran frekuensi pusat garis E dibatasi antara 100 dan 150 Hz. Juga telah diamati pergeseran frekuensi yang terbesar adalah karena tekanan methane.
Untuk pengukuran frekuensi absolut dan garis E, laser Zeeman He-Ne distabilkan menggunakan sebuah sistim deteksi ganda yang unik, yang telah dikembangkan dalam percobaan Penentuan frekuensi absolut garis E dilakukan menggunakan rantai pengukuran frekuensi yang ber-phasa koheren, yang dihubungkan dengan jam Cs dari PTB. Sebagai hasil dari pengukuran ini diperoleh frekuensi pusat garis E :
vE = 88 373 149 028 553 ± 230 Hz, ini menunjukkan penambahan ketelitian yang cukup berarti terhadap pengukuran sebelumnya.

This thesis describes the development and measurement of a frequency standard at 88 THz, based on E-line of P(7) transition of CI-4 For this propose we use a He-Ne laser tuned by Zeeman effect to E-line.
The He-Ne laser used in this experiment is excited by RF-discharge, which gives a low noise laser output. The matching condition of the impedance between RF power amplifier and the He-Ne laser is achieved more effectively by using a resonator transformer.
From three components of the Zeeman effect only 6 component is used as the laser gain line in this experiment and the two a+, n components are suppressed by methylbromide vapour and Brewster window respectively, so that the E-line RF He-Ne laser oscillates at a single adjustable frequency with a low noise laser output.
To enhance the SIN ratio of the detection of the E-line absorption spectrum, a saturated dispersion system using a double mode RF He-Ne laser have been studied and developed. This system works as an ideal internal heterodyne detector for recording the beat frequency. As a result the SIN ratio is improved by a factor of 4 to 5 times.
Employing this detection system has been carried out to study the dependency of the E-line center frequency on the operating parameters such as the laser power, the laser modulation width and the methane pressure. The frequency shift was measured by using an offset lock system with respect to the center component of the hyperfine resolved F2 -line as a stable reference. It was found that within the variation range of the operatings parameters the center frequency shift of the E-line, was limited between 100 and 150 Hz. It was also observed that the largest frequency shift was due to methane gas pressure.
For measurement of the absolute frequency of the E-line, the Zeeman tuned He-Ne laser was stabilized using an unique double detection system, which was developed in this work. The determination of the absolute frequency of the E-line was carried out using a phase coherent frequency measurement chain linked to a Cs clock of PTB. As the result of this measurement the E-line center frequency of CH4 was found to be:
vE = 88 373 149 028 553 ± 230 Hz and this result shows a substantial increasing accuracy over the previous measurements.
"
Depok: Fakultas Teknik Universitas Indonesia, 1998
D370
UI - Disertasi Membership  Universitas Indonesia Library
cover
Basrul Bahar
"ABSTRAK
Telah dibuat suatu sistem Magneto Optical Trap untuk mendinginkan dan memperangkap atom gas yang terdiri dari sepasang kumparan anti Helmholtz dengan 3 pasang cahaya laser pendingin yang dihasilkan dari satu laser dioda, dan satu laser lainnya digunakan sebagai laser pemompa-kembali (repumping laser). Atom Cs diletakkan dalam satu ruang oakum tinggi yang berada di tengah-tengah kumparan anti Helmholtz. Dengan bantuan sistem ini telah dapat diperangkap sekitar 107 atom Cs dan didinginkan sampai temperatur beberapa μK. Gumpalan awan atom ini dapat diamati dan foto luminesensi yang terjadi dalam awan yang didinginkan tersebut.
Sifat-sifat dinamika awan atom Cs ini dapat dipelajari dengan mematikan atau mengubah frekuensi laser pendingin dan laser pemompa-kembali secara terprogram dan dengan mengamati luminesensinya. Dengan cara ini dapat dipelajari gejala transien, dan penjarangan populasi yang menyertainya.
Selanjutnya telah dilakukan pengukuran temperatur dengan menggunakan metoda balistik yang sudah lazim dilakukan orang. Disamping itu telah dikembangkan cara pengukuran temperatur awan atom yang lebih teliti dengan menggunakan osilasi posisi dari awan atom dengan menggunakan medan magnet dari kumparan Anti Helmhotz yang berosilasi. Temyata metoda ini lebih dapat diandalkan dan hasilnya konsisten dengan metoda yang konvensional.

ABSTRACT
A Magneto Optical Trap has been built consisting a pair of Anti Helmholtt coils with three pairs of cooling laser beams produced by one laser diode, and the other one for repumping. The Cs atom is placed in a high vacuum chamber located in the center of the anti Helmholtz coils. In this system about 107 Cs atoms have been trap and cooled to a temperature of a few μK. The cloud can be observed from the luminescence of the cooled atoms.
The dynamical properties of the cooled Cs atom has been studied by turning off or changing the frequency of the cooling laser and the repumping laser precisely for a short period and observing the luminescence of the cloud. In this way the characteristics of the transient phenomena of the cloud, such as the build up time, the pumping time and the density of the cooled Cs atoms can be studied.
The temperature of the cooled Cs atom in the cloud has been determined using the well known ballistic method. A new method for the measurement of the temperature of the Cs atoms has been developed. In this new method the position of the cloud is oscillated by a uniform oscillating magnetic field produced from a sinusoidal modulation added to the one of anti Helmholtz coils. The results turns out to be more reliable and the measurement result is consistent with the conventional method.
"
Depok: Fakultas Teknik Universitas Indonesia, 1997
D78
UI - Disertasi Membership  Universitas Indonesia Library
cover
Wihartini
"Penelitian ini membahas studi tentang deteksi perubahan penutup lahan Kalimantan Tengah, menggunakan multi-temporal Synthetic Aperture Radar (SAR) JERS-i. Penggunaan citra SAR untuk observasi muka bumi dimana kondisi berawan dan kabut merupakan hambatan utamanya, mempunyai potensi yang sangat besar dalam memonitor perubahan area. Tetapi adanya proses koherensi data SAR membuat citra tersebut dengan mudah akan tercemar oleh bising speckle, yang merupakan.sinyal tak bebas dan berlaku sebagai bising multiplikatif.
Pokok bahasan dari penelitian ini yang pertama adalah meminimumkan bising (denoising) speckle dengan menggunakan algoritma a trous. Selanjutnya kesulitan penggunaan citra optis untuk identifikasi obyek pada daerah yang sering berawan dan hujan lebat akan digantikan dengan citra SAR dengan memanfaatkan sifat transfcrmasi dari algoritma wavelet a troust. Transformasi ini akan menghasilkan satu set citra detail dari skala yang berbeda, sehingga citra SAR yang merupakan single band akan mendapatkan tambahan band dari citra-citra detail tersebut. Dengan demikian pemrosesan citra SAR dapat dianalogikan sebagai pemrosesan multiband dari citra optis, sehingga dapat menggali lebih banyak informasi untuk identifikasi obyek. Tahap berikutnya dilakukan pengklasteran pada citra detail tersebut dengan teknik Pemetaan Swa-Atur (Self-Organizing Map (SOA4)") karena tidak tersedianya data groundtruth. Tahap lerakhir adalah deteksi perubahan area menggunakan teknik Pcrbedaan Citra ("Image Differenciing") dan Analisa Komponen Utama ("Principle Component Analysis (PCA)").
Proses denoising pada pra-pengolahan akan dilakukan dengan menggunakan pemodelan bising. Pada citra SAR karena bisingnya adalah speckle yang bersifat multiplikatif maka perlu dilakukan proses homomorphik, yaitu proses untuk memisahkan komponen deterministik (sinyal) dengan komponen statistik (bising) sehingga bising dapat dimodelkan dalam bentuk Gaussian. Untuk itu sebelum denoising citra akan di log-kan terlebih -dahulu sehingga terpisah antara kompcnen sinyal dan komponen bisingnya. Transformasi a trous adalah transformasi wavelet multiresolusi yang dilakukan skala (resolusi) per skala tanpa ada desimasi. Hasilnya adalah satu set citra detail wt (dimana i menyatakan tingkat skala, I 1,2.j ) dan satu citra approksimasi pada skala tertinggi c1, tanpa terjadi peruoahan ukuran citra pada setiap skala. Dalam transformasinya harga piksel ke-k ditentukan oleh c;+r(k) = ., h(n) c;(kl 2'n), dimana h adalah koefisien filter 133 spline dengan -2 n < +2 , menyebabkan harga pixel tersebut menjadi berkurang atau bertambah ditentukan oleh 5 harga pixel yang ke-(k+2'n). Secara analitis korelasi citra detail pada skala (i-1) dengan citra detail pada skala I dapat dibuktikan melalui w; = c(,.0 - c; dan secara eksperimen dapat dibuktikan melalui matriks korelasi dari PCA. Dengan adanya korelasi menyebabkan persoahan obyek dalam citra-citra detail dapat diamati. Citra detail dari transformasi a trous yang masih mengandung bising speckle akan di denois menggunakan teknik Multiresolution Support, yaitu teknik untuk uji signifikansi bising pada setiap pixel dari citra. Signifikansi bising didasarkan pada nilai standard deviasi 6; dari citra detail pada skala j dikalikan dengan konstanta K, yaitu K6.j. Hal inilah yang menyebabkan pemilihan harga K dipengaruhi oleh daerah observasi. Pada penelitian ini di lakukan percobaan dengan harga K = 2, 2.5, 3, 3.5 dan hasilnya yang terbaik adalah K = 3. Hasil rekonstruksi setelah uji signifikansi Multiresolulion Support adalah citra dengan residual artifact atau citra dengan struktur yang tidal: sebenarnya, oleh karena itu perlu dilakukan proses guna mengurangi efek residual artifact tersebut. Proses pengurangan residual artifact adalah suatu proses iterasi dimana akan dihitung citra residu, yaitu pengurangan citra asli dikurangi dengan citra dengan residual artifact. Pada setiap iterasi citra residu akan ditransformasi menggunakan a trous menjadi satu set citra detail residu dan citra appraksimasi residu. Selanjutnya ditentukan koefisien wavelet signifikan dan dilakukan rekonstruksi kembali. Bila residu masih dinyatakan signifikan maka citra residu akan ditambahkan ke citra residual artifact pada proses sebelumnya. Selanjutnya dilakukan proses iterasi kembali sampai harga residu sudah tidak signifikan lagi. Pada penelitian ini diambil toleransi error a 5 0.002 dan hasilnya adalah citra yang telah di denois atau citra denoising. Pada kelompok wavelet, hasil denoising menggunakan trous dapat menekan bising sampai 43% tanpa ada kerusakan struktur dan penurunan nilai rata-rata yang sangat rendah sampai 0.005%. Meskipun hasil denoising tidak sebaik Haar (50%) atau Daubechies (481') tapi trous mempunyai kekhususan dimana nilai variannya masih cukup tinggi, tidak mengalami pengerutan ukuran pada saat transformasi dan terdapat redundansi pada citra detaiinya sehingga tidak banyak kehilangan informasi. Hasil penelitian ini juga memperlihatkan bahwa transformasi a Emus mempunyai performansi yang cocok untuk aplikasi deteksi perubahan penutup laltan, karena obyek dalam citra, dapat diamati dalam skala yang berbeda. Makin tinggi tingkat resolusinya maka obyek dengan frekuensi rendah (misal sungai) akan makin jelas struktumya, sedang obyek dengan frekuensi tinggi (misal pohon-pohon yang bergerombol) akan nampak pada beberapa skala rendah dan selanjutnya akan menghilang. Hal ini terjadi karena dalam transfonnasinya harga pixel pada skala-(j+ I) ditentukan berdasarkan harga pixel ke-(k+2'n).
Selanjutnya untuk identifikasi obyek, citra denoising akan ditransforrnasi menggunakan wavelet a trous sampai skala 4, karena pada skala 5, terlihat pembesaran obyek sungai sudah tidak proporsional Iagi. Citra detail ini akan di analogikan sebagai band-band seperti pada teknik pemrosesan multiband dari citra optis. Selanjutnya dilakukan pengklasteran pada masing-masing citra detail menggunakan teknik Pentetaan Swa-Atur (SCM), Untuk melakukan deteksi perubahan penutup lahan, akan dilakukan dua cars pemrosesan yaitu pertama akan dilakukan proses Perbedaan Citra pada satu set citra detail yang sudah terklaster dan yang kedua menggunakan PCA, Pada proses PCA dilakukan penseleksian band berdasarkan harga eigenvalue kovariannya. Pertama dipilih band dengan eigcn value terbesar, selanjutnya dipilih band lain yang mempunyai harga eigenvalue kovarian ? 10% dari harga eigenvalue band terbesar. PCA terpilih akan diklasterkan dan dilakukan proses Perbedaan Citra. Hasilnya diperoleh bahwa ada kemiripan antara basil dari proses PCA dan yang langsung dari Perbedaan Citra. Hasil pengamatan memperlihatkan bahwa telah terjadi perubahan pada daerah rawa, scattered trees dan tropical grass, sedangkan untuk obyek sungai, baik yang dalam maupun yang dangkal, sedikit sekali perubahannya. Verifikasi obyek dilakukan menggunakan peta thematik dengan skala 1:250.000 dan citra Landsat TM Kalimantan tengah yang diambil pada Maret (97).

Wavelet A. Trolls Algorithm Aided Synthetic Aperture Radar Image Analyses Applied to Land Cover C1-Imange Detection in Central Kalimantan This research studied the land coverage change detection in Central Kalimantan using multi-temporal Synthetic Aperture Radar (SAR) MRS-I. The use of SA.R image for earth surface observation where haze and cloud coverage become a problem, has great potentiality in monitoring the area change. Due to coherence process of the SAR data, this makes the image easily contaminated by speckle noise, which is an independent signal and act as multiplicative noise.
The main topic of this research is to minimize the speckle noise (denoising) by using the trout algorithm. Subsequently, to identify objects, SAR image processing is analogue with multiband process of the optical image. Because SAR is single band, a trous wavelet transformation is used to obtain the additional band for a set of detail image. The next step is clustering on the detail image with Self-Organizing Map {SOM} technique due to the unavailability of ground truth. The final step is area change detection with Image Differencing and Principle Component Analysis (PGA) techniques.
The denoising in pre-process is performed with noise modeling. In SAR image, since the noise is speckle that is multiplicative in nature, homomorphism process or the process to separate deterministic (signal) and statistic (noise) components is performed so the noise can be modeled in Gaussian. Therefore, before denoising process, image has to take its logarithm first so the signal component is separated from the noise component. A trous transformation is a multiresolution wavelet transformation done in scale (resolution) by scale without decimation. The result is a set of detail image wt (where i represents scale level, r = 1,2.j ) and one approximation image in highest scale e without change in image size in all scales. This did not occur in known wavelet transforms, like Haar and Daubechies, where the transformation has one specific direction and suffering from the shrinking of the image size with the increase of the scale resolution. In the transformation, the value of the 11f' pixel determined by c;+r(k) = 2, h(n) c;(k+2'n), where h is the B3 spline filter coefficient with -2 5 n 5 +2, causing the value of the pixel to decrease or increase according to five (k+2'n) pixel values. The detail image on scale i is obtained from w, = c(1_J) - c,, so there are redundancy of the detail image scale (i-i) with the scale i. This causes the object changes in detail images to become observable. The detail image from a trous transformation that still contain speckle noise is denoised with Multiresolution Support technique, which is a technique for noise significancy testing on each image pixels. The noise significance is based on the standard deviation value of the detail image on the scale j (cr) multiplied with the constant K, that is K6;. This causes the choice of K value affected by the observation area. In this research, experiments are performed with the value of K = 2, 2.5, 3, 3.5 and, the best result is at the K value of 3. The reconstruction result after Multiresolution Support significance test is an image with residual artifact; therefore, it is needed to perform a process to reduce the effect of the residual artifact. The process to reduce the residual artifact is an iteration process where residual image is counted, which is original image reduction subtracted by image with residual artifact. During each iteration, residual image is transformed with a trous into a set of residual detail images and a residual approximation image. Subsequently, significant wavelet coefficient is determined, and the reconstruction is performed. If the residue still significant, then the residual image is added to the residual artifact image of the previous process, and the iteration is performed until the residual value is not significant. In this research, error tolerance is taken at e 5 0,002 and the result is a denoised image.
In a wavelet group, the denoising result with a trous can suppress the noise down to 43% without structural damage and very low average devaluation of 0.005%. Although the denoising result is not as good as Haar (50%) or Daubechies (48%), a trous have specification that the transformed image result did not suffer the shrinking in size and have redundancy on the detail image so it's not lose much information. While in wavelet transformation with Haar and Daubechies, the higher the scale will result in structural damage, where visually indicated by boxed shape in Haar, and spots in Daubechies. The result of this research also shown that 'a trous transformation have suitable performance for land coverage area change detection application, and since the objects are in images, it's observable in different scales. Low-frequency objects will become clearer when the resolution is higher, while higher-frequency objects visible in some lower scales and subsequently disappearing. This happens because in the transformation the pixel value in the scale -0+1) is determined by the value of the pixel -(k+ 2'n).
For the object identification, denoised image is transformed with a trous wavelet resulting in a set of detail images. Image transformation is done to 4U' scale, since in the 5u' scale, the object magnification is no longer proportional. This detail image is analog as bands like in multib and processing of optical image. Clustering is done on each detail images with. Self-Organizing Map technique. To detect the area coverage change, two processes are performed. First is direct Image Differencing process on a set of clustered detail images, second is with the PCA. In the PCA process, the first step is band selection based on the eigen value co-variant. The band with the biggest eigen value is chosen first, then pick another band with co-variant eigenvalue ? 10% of the biggest. eigen value band. The chosen PCA from March 97 and August 98 images are clustered and processed with image Differencing. So, to process the area change detection with SAR image could be done right away with a trolls wavelet transformation, and for the area detection is using Image Differencing. The result indicates that there are similarities between the result with PCA and without PCA. The observation result shown that there are changes on swamps, scattered trees, and tropical grass areas. While for rivers, either deep or shallow, there is very little change. Object verification is done with thematic map on 1:250000 scale and Landsat TM image taken on March 97."
Depok: Fakultas Teknik Universitas Indonesia, 2002
D430
UI - Disertasi Membership  Universitas Indonesia Library
cover
Marpaung, Mangasi Alion
"A comprehensive study has been made on the dynamical process-taking place in the laser-plasma generation induced by a TEA CO2 laser bombardment on metal target and non-metal target from low to high pressures surrounding gas. In the case of metal target, pure zinc plate was used as a target and bombarded with 400-mJ-laser pulse energy. Dynamical characterization of plasma expansion and excitation were examined in detail both for target atomic emission (Zn I 481.0 nm) and gas atomic emission (He 1 587.6 nm) by using a unique time-resolved spatial distribution measurement and conventional emission spectroscopic detection method. The results showed that the plasma expands and develops with time. The mechanism of plasma generation can be classified into three cases depending on .the surrounding gas pressures; target shock wave plasma in the pressure range between 2 Ton and 20 Ton, coupling shock wave plasma in the pressure range between 50 Torr and 200 Torr and gas break down shock wave plasma in the pressure range between 200 Ton and I atm. In all cases in the laser-plasma generation under TEA CO2 laser bombardment on metal target, shock wave process always plays important role for exciting the target atoms and gas molecules.
In the case of non-metal target, a museum glass was used as a target and bombarded with a 400 nd laser pulse energy. By using the conventional emission spectroscopic detection method, namely temporally and spatially integrated and time-resolved spatially integrated of plasma emission, it was shown that the plasma mainly consists of target atomic emission. Only weak gas atomic emission intensity could be observed even at I atm of surrounding gas pressure. These results indicate that the gas breakdown is not a major process responsible to the plasma formation even at high pressure surrounding gas. Shock wave process was considered as an important role in this plasma formation. By the use of shadowgraph technique to detect the density jump signal due to the shock wave front involving a He-Ne laser as a probe light, simultaneous detection of the shock wave front and the emission front was successfully implemented. The result showed that at the initial stages of plasma expansion shock wave front and emission front coincide and move together with time. At the later stages of plasma expansion the two fronts became separate with the emission front left behind the shock wave front. These results are completely coinciding with the shock wave plasma model. Unfortunately, in this experiment we succeed to detect the density jump signal only for high pressure surrounding gas, above 100 Torr. At the pressures lower than 100 Torr the density jump signal was very weak and it is difficult to distinguish with the noise including in the signal.
The other important experimental results that support the shock wave plasma model were also obtained in this experiment, namely the coincidence of emission front regardless of their atomic weight and sub-target effect. By using lead glass as a sample, which contain Pb, Si, and Ca, it was confirmed that the emission front of the Pb I 450.8 nm, Si 1288.2 nm and Ca I 422.6 nm almost coincide regardless of their atomic weight. This result also supports the shock wave plasma model because, by the stagnation of the propelling atoms, the front position of the all atoms coincides regardless of its mass. In the case of sub-target effect, confirm that plasma could be produced even for soft target if sub-target is set behind the sample. In this case we use a quartz sample as a sub-target and a vinyl tape was attached to the quartz sample as a target. The TEA CO2 laser bombardment was used at 150 ml and at 1 atm of air. The main role of the subtarget is to produce a repulsion force for atom gushing with high speed. For shock wave, high speed is necessary condition to compress the gas.
Coincidence of the movement of the shock wave front and the emission front in the initial stages of plasma expansion is a direct proof of the shock wave plasma model. By improving the detection technique of the density jump associated with the shock wave, the correlation between the shock wave front and the emission front was examined in detail. For this purpose rainbow interferometer system, which has higher sensitivity compared with the shadowgraph technique, was used to detect the density jump signal. We succeed to realize simultaneous detection of shock wave front and emission front from 3 Ton until 1 atm of air when a quartz sample is bombarded with a 600 nil TEA C02 laser. In all pressure that were examined, the shock wave front and the emission front always coincide and move together with time in the initial stages and separate at the later stages with emission front left behind the shock wave front. The coincidence of the shock wave front and emission front and move together with time at the initial stages of plasma expansion was also obtained by using ruby as a sample at 10 Torr and 100 Ton of air as well as with museum glass at the same laser pulse energy.
Another important experimental result obtained in this experiment is that confirmation of the coincidence of the target atomic emission front and gas atomic emission front and density jump. This confirmation was obtained by examined a Quartz sample in 50 Ton of helium and a zinc sample in 100 Ton of helium. This result strongly supports the shock wave plasma model because, in ordinary shock tube experiment, gas emission takes place just behind the shock wave.
From a practical point of view of direct microanalysis for spectrochemicaI application of alloy metal samples such as brass, selective vaporization effect was also studied. The results showed that even for Nd-YAG laser with short pulse duration (8 ns) and high power density (30 GWcm 2), selective vaporization take place to a certain extend. It was demonstrated in this experiment that selective vaporization is enhanced if the laser irradiation was repeated on the same spot of sample surface. Meanwhile it was also shown in this experiment that the effect of selective vaporization could be significantly suppressed by increasing the surrounding gas pressure from 2 Toff to around 50 Torr of air."
Depok: Fakultas Teknik Universitas Indonesia, 2000
D234
UI - Disertasi Membership  Universitas Indonesia Library
cover
Marpaung, Mangasi Alion
"ABSTRACT
A comprehensive study has been made on the dynamical process taking place in the laser-plasma generation i.nduced by a TEA CO2 laser bombardment on metal target and non-metal target Eom low to high pressures surrounding gas. ln the case of metal target, pure zinc plate was used as a target and bombarded with 400 ml laser pulse energy. Dynamical characterization of plasma expansion and excitation were examined in detail both for target atomic emission (Zn I 481.0 nm) and gas atomic emission (He I 587.6 nm) by using an unique time-resolved spatial distribution measurement and conventionalemission spectroscopic detection method. The results
showed that the plasma expands and develops with time. The mechanism of plasma generation can be classified into three cases depending on the surrounding gas pressures; target shock wave plasma in the pnessure range between 2 Torr and 20 Torr, coupling shock wave plasma in the pressure range between S0 Torr and 200 Torr and gas ?break down shock wave plasma in the pressure range between 200 Torr and 1 atm. In all cases in the laser-plasma generation under TEA CO; laser bombardment on metal target, shock wave process-always plays important role for
exciting the target atoms and gas molecules.
ln the case of , non-metal target, a museum glass was used as a target and bombarded with a 400 mJ laser; pulse energy By using the conventional emission spectroscopic detection method, namely temporally and spatially integrated and time-resolved spatially integrated of plasma emission, it was shown that the plasma mainly consists of target atomic emission. Only weak gas atomic emission intensity could be observed even at 1 atm of surrounding gas pressure. These results indicate that the gas breakdown is not a major process responsible to the plasma formation even at high pressure surrounding gas. Shock wave process was considered as an
important role in this plasma formation. By the use of shadowgraph technique to detect the density jump signal due to the shock wave front involving a He-Ne laser as a probe light, simultaneous detection of the shock wave Bent and the emission iiont was successfully implemented. The result showed that at the initial stages of plasma expansion shock wave 'dont and emission front coincide and move together with time. At the later stages of plasma expansion the two fronts become separate with the emission front left behind the shock wave front. These results are completely coinciding with the shock wave plasma model. Unfortunately, in this experiment we succeed to detect the density jump signal only for high pressure surrounding gas, above 100 Torr. At the pressures lower than 100 Torr the density jump signal was very weak and it is diflicult to distinguish with the noise including in the signal.
The other important experimental results that support the shock wave plasma model were also obtained in this experiment, namely the coincidence of emission iziont regardless of their atomic weight and sub-target effect. By using lead glass as a sample, which contain Pb, Si, and Ca, it was confirmed that the emission front of the Pb 1450.8 nm, Si I 288.2 nm and Ca I 422.6 nm almost coincide regardless of their atomic weight. This result also supports the shock wave plasma model because, by the stagnation of the propelling atoms, the front position of the all atoms coincides regardless of its mass. In the case of sub-target effect, we confirmed that plasma
could be produced even for sch target if sub-target is set behind the sample. In this case we use a sample as a sub-target and a vinyl tape was attached to the quartz sample as a target. The TEA CO2 laser bombardment was used at 150 mJ and at 1 atm of air. The main role ofthe subtarget is to produce a repulsion force for atom gushing with high speed. For shock wave, high speed is necessary condition to compress the gas.
Coincidence of the movement of the shock wave iiiont and the emission front in the initial stages of plasma expansion is a direct proof of the shock wave plasma model. By improving the detection technique of the density jump associated with the shock wave, the correlation between the shockwave fiont and the emission front was examined in detail. For this purpose rainbow interferometer system, which has higher sensitivity compared with the shadowgraph technique, was used to detect the density jump signal. We succeed to realize simultaneous detection of shock wave front and emission front iiom 3 Torr until 1 atm of air when a quartz sample is bombarded with a 600 mJ TEA CO2 laser. In all pressure that were examined, the shock wave front and the emission front always coincide and move together with time in the initial stages and separate at the later stages with emission front left behind the shock wave tiont. The coincidence of the shock wave iiont and emission front and move together with time at the initial stages of plasma expansion was also obtained by using ruby as a sample at 10 Torr and 100 Torr of air as well as with museum glass at the same laser pulse energy."
2000
D1361
UI - Disertasi Membership  Universitas Indonesia Library