Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Elang Parikesit
Abstrak :
ABSTRACT
The position of the sun in the sky always changes periodically. A lot of research has been done to follow the sun's motion using a solar tracking system to increase the amount of solar energy that can be absorbed. The solar tracking system can be grouped into passive and active system. Active sun tracker system uses motor drive in following the motion of the sun. The current active tracking system is using one or two rotary axis. Active two-axis solar tracking system provides greater efficiency and effectiveness than one-axis solar tracking system. This study aims to increase the absorbable sun energy with a simple two-axis solar tracking system. This research has been done by experimental method by making a model of two-axis sun tracker and its field data retrieval. The main parts of the model in this study are (1) LDR sensor, (2) microcontroller and (3) motor drive. Initial data of field test results shows a maximum increase (269%) in absorbable solar energy on a model using a sun tracker than models that do not use a solar tracking system.
Yogyakarta: Media Teknika, 2017
620 MT 12:2 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
Doddy Purwadianto
Abstrak :
ABSTRACT
A common way to increase the efficiency of distillation of solar energy is by cooling the cover glass. The method of cooling glass that is widely studied is the spray method. Spray method still has a weakness that is not the entire surface of the glass can be wetted cooling water. The water reservoir method allows wettage of the entire surface of the cover glass so that the cooling process can be better. This study aims to increase the efficiency of the distillation of solar energy water by cooling the cover glass using a water reservoirs method. Parameters varied during this experimental stage are: the cooling water mass rate. Parameters measured were: (1) absorber temperature, (2) cover glass temperature, (3) cooling water temperature, (4) input water temperature, (5) ambient air temperature, (6) distilled water, (7) solar energy coming and (8) data recording time. The conclusions of this study were: the largest distillate water yield obtained was 3.26 liter / (hari.m2) with an average efficiency of 41.0%. Distilled water yield and best efficiency are obtained at cooling water rate of 7.1 liter / hour. The temperature difference between the absorber and the largest glass is 11.4°C
Yogyakarta: Media Teknika, 2017
620 MT 12:2 (2017)
Artikel Jurnal  Universitas Indonesia Library