Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Teguh Yulius Surya Panca Putra
Abstrak :
ABSTRAK
Sintesis dengan metode pendinginan cepat (rapid quenching) dan karakterisasi bahan konduktor superionik berbasis gelas (AgBr)x(LiP03)1-x dengan variasi penambahan AgBr (x) = 0,0; 0,3; 0,5 dan 1 ,0 telah dilakukan. Hasil y~ng diperoleh pada komposisi AgBr (x) = 0,0 berupa bahan substrat gelas LiP03 transparan (bening) dan tidak berwarna, untuk x = 0,3 dan 0,5 diperoleh produk yang masing-masing terdiri dari dua komponen dengan warna berbeda yaitu hijau sebagai komponen AgBr dan merah muda bercampur putih sebagai komponen LiP03 dan untuk x = 1,0 diperoleh padatan AgBr berwarna hijau sebagai garam terlelehkan (molten salt). Karakterisasi difraksi sinar-X menunjukkan bahwa substrat gelas LiP03 dan komponen-komponen berwarna merah muda bercampur putih merupakan bahan gelas bersifat amort, sedangkan garam terlelehkan AgBr dan komponen-komponen berwarna hijau merupakan bahan yang masih memiliki sifat kristalin dengan perubahan struktur ke arah amort. Karakterisasi morfologi dan komposisi unsur pada komponen LiP03 dengan SEM-EDS memperlihatkan adanya pertumbuhan presipitat AgBr di dalam matriks gelas yang semakin jelas dengan persen berat yang meningkat dengan semakin besarnya komposisi AgBr. Sementara pada komponen AgBr, mortologinya tidak jauh berbeda untuk semua komposisi AgBr. Penambahan AgBr dengan komposisi x = 0,5 akan menurunkan persen berat total dari Ag dan Br di dalam komponen. Pengukuran densitas terhadap komponen LiP03menunjukkan bahwa komposisi AgBr yang semakin besar meningkatkan densitas komponen LiP03 dan sebaliknya akan menurunkan densitas komponen AgBr. Secara umum, densitas komponen LiP03Iebih rendah daripada komponen AgBr. Kekerasan Vickers komponen gelas tertinggi diperoleh pada komposisi AgBr (x) = 0, 5 sedangkan pada komposisi yang lain kekerasannya lebih rendah. Sementara itu, komposisi AgBr yang semakin besar secara konsisten menurunkan kekerasan komponen AgBr. Karakterisasi sifat termal dengan DSC menunjukkan temperatur transisi gelas {Tg) komponen LiP03 turun pada komposisi AgBr (x) = 0,3 dan kembali naik pada x = 0,5 sebagai akibat kristalisasi dan presipitasi AgBr di dalam matriks gelas. Sementara itu, komposisi AgBr yang semakin besar secara konsisten akan meningkatkan Tg dari komponen AgBr. Pengukuran konduktifitas ionic dengan LCR-meter menunjukkan bahwa peningkatan komposisi AgBr akan meningkatkan konduktifitas komponen LiP03. Konduktifitas komponen LiP03 tertinggi pada temperatur ruang dan frekuensi 1 Hz adalah 2,3736 X 1 o-7 S/cm pada komposisi AgBr (x) = 0,5. Konduktifitas komponen AgBr turun pada x = 0,5 akibat adanya presipitasi AgBr dan mencapai maksimum pada x = 1,0 yaitu 3,8949 x 1 o-7 S/cm. Secara umum komponen AgBr memiliki konduktifitas yang lebih tinggi daripada komponen LiP03.
Depok: [Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Indonesia, ], [2006, 2006]
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kartika
Abstrak :
Sintesis dengan menggunakan metode indirect (pembuatan substrat gelas terlebih dahulu), metode pendinginan cepat (rapid quenching) dan metode milling telah dilakukan serta karakterisasi bahan konduktor superionik berbasis gelas (AgI)x(LiPO3)1-x dengan variasi penambahan AgI (x) = 0,0; 0,3; 0,5 dan 1,0. Hasil yang diperoleh pada komposisi AgI (x) = 0,0 berupa bahan substrat gelas LiPO3 transparan (bening), untuk x = 0,3 dan 0,5 diperoleh produk yang masing-masing terdiri dari dua komponen yaitu hijau kekuningan sebagai komponen dominan AgI dan bening transparan kekuningan sebagai komponen dominan LiPO3 dan untuk x = 1,0 diperoleh padatan AgI berwarna hijau kekuningan sebagai garam terlelehkan (molten salt). Sedangkan bahan yang telah mengalami proses milling (after milling) berupa serbuk berwarna kuning untuk komponen dominan AgI dan berupa serbuk berwarna coklat untuk komponen dominan LiPO3. Karakterisasi difraksi sinar-X menunjukkan bahwa substrat gelas LiPO3 dan komponen-komponen bening kekuningan merupakan bahan gelas bersifat amorf, sedangkan garam terlelehkan AgI dan komponen-komponen berwarna hijau kekuningan merupakan bahan yang masih memiliki sifat kristalin. Untuk bahan after milling baik komponen dominan AgI dan komponen dominan LiPO3 pola difraksi sinar-X menunjukkan perubahan ke arah yang lebih amorf. Pengukuran konduktifitas ionik dengan LCR-meter menunjukkan bahwa peningkatan komposisi AgI akan meningkatkan konduktifitas komponen dominan LiPO3. Adanya proses milling akan meningkatkan nilai konduktifitas karena selain memperkecil ukuran partikel juga memperbesar luas permukaan, memperbanyak kontak partikel, mengurangi porositas sehingga memudahkan proses difusi ion-ion dan membentuk jejak konduksi yang lebih baik. Konduktifitas komponen dominan LiPO3 tertinggi pada temperatur ruang dan frekuensi 1 Hz adalah 6,639 x 10-7 S/cm pada komposisi AgI (x) = 0,3 meningkat menjadi 2,040 x 10-6 S/cm setelah dimilling. Konduktifitas komponen dominan AgI pada x = 0,3 adalah 1,138 x 10-5 S/cm meningkat menjadi 7,049 x 10-5 S/cm setelah dimilling. Konduktifitas komponen dominan AgI pada x = 0,5 adalah 3,942 x 10-5 S/cm meningkat menjadi 1,298 x 10-4 S/cm setelah dimilling. Secara umum komponen dominan AgI memiliki konduktifitas yang lebih tinggi daripada komponen dominan LiPO3. Karakterisasi sifat termal dengan DTA (Diffential Thermal Analysis) menunjukkan temperatur transisi gelas (Tg) komponen dominan LiPO3 turun pada komposisi AgI x = 0,3 yaitu 2330C bila dibandingkan dengan komponen dominan LiPO3 pada komposisi AgI x = 0,0 yaitu 240,50C. Sementara itu, komposisi AgI yang semakin besar secara konsisten akan meningkatkan Tg dari komponen dominan AgI. Temperatur transisi gelas akan mengalami penurunan pada masing-masing bahan yang telah mengalami proses milling. Bahan AgI murni tidak memiliki temperatur transisi gelas. Kekerasan Vickers komponen LiPO3 tertinggi diperoleh pada komposisi AgI x = 0, 0 sedangkan pada komposisi yang lain kekerasannya lebih rendah. Sementara itu, kekerasan komponen AgI terendah diperoleh pada x = 1,0, sedangkan pada komposisi lain kekerasannya lebih tinggi. Pengukuran densitas terhadap komponen LiPO3 menunjukkan bahwa komposisi AgI yang semakin besar meningkatkan densitas komponen LiPO3 serta akan menaikkan densitas komponen AgI. Secara umum, densitas komponen LiPO3 lebih rendah daripada komponen AgI.Konsistensi ini terdapat pula pada bahan yang telah mengalami proses milling.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2007
S30635
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siti Nikmatin
Depok: Universitas Indonesia, 2004
T39810
UI - Tesis Membership  Universitas Indonesia Library
cover
Ratna Permata Sari
Abstrak :
[Telah dilakukan peningkatan konduktivitas listrik LiFePO4 dengan metode penambahan material logam nano Cu dan CNTs. Metode ini menjadi pilihan yang menarik karena mudah dan murah dalam proses pembuatannya. Proses sintesis dilakukan dengan mencampur serbuk LiFePO4 (komersil) dengan variasi presentase berat nano tembaga (komersil) 0, 1, 3, 5, 7 wt. % dan 5 wt. % nano karbon (komersil) kemudian di proses vacuum mixing dan film applicator. Pengujian XRD, SEM dan EDX dilakukan pada serbuk yang diterima untuk mengkonfirmasi fasa, ukuran butir serta ada tidaknya impurities. Hasil XRD dan EDX pada serbuk nano Cu menunjukkan bahwa telah terjadi oksidasi dan terbentuk menjadi CuO dan Cu2O, serta ditemukan adanya impurities elemen S sebesar 8.5 wt. %. Komposisi fasa yang dihasilkan dari proses penambahan didapat dari menganalisis pola difraksi XRD menunjukkan bahwa fasa yang terbentuk adalah LiFePO4 namun ditemukan adanya impurities berupa Cu4O3 pada variasi penambahan 80 wt. % LiFePO4, 5 wt. % Cu, 5 wt. % C, dan 10 wt. % PVDF. Konduktivitas listrik diuji material katoda LiFePO4 dengan EIS, dan hasil uji menunjukkan bahwa konduktivitas listrik LiFePO4 meningkat seiiring dengan penambahan nano Cu namun tidak terlalu signifikan (dalam satu orde), hal ini dikarenakan efek oksidasi pada Cu. Pada variasi penambahan nano C dan nano Cu terjadi peningkatan sebesar 3 orde dengan nilai konduktivitas sebesar 8.4 x 10-5 S/cm pada variasi penambahan 80 wt. % LiFePO4, 5 wt. % Cu, 5 wt. % C. Penambahan nano karbon pada LiFePO4 lebih efektif dalam peningkatan konduktivitas dibandingkan dengan penambahan nano Cu dikarenakan efek oksidasi pada Cu yang tidak dapat dihindari. Morfologi material katoda dan distribusi nano Cu dan nano karbon dianalisis menggunakan SEM/EDX, menunjukkan material yang dicampur pada variasi penambahan nano Cu cukup homogen, struktur butir spherical, sedangkan pada variasi penambahan nano Cu dan nano karbon struktur butir polyhedral dengan ukuran butir berada pada rentang 100- 500 nm. Struktur butir ini mempengaruhi hasil cole plot dimana pada variasi penambahan Cu terbentuk semicircle sedangkan pada penambahan nano C tidak;Improved of Electrical conductivity of LiFePO4 with the method of adding Cu Nano metal material and CNTs has been done. This method is an attractive option because it is easy and inexpensive in the manufacturing process. Synthesis process is done by mixing the powder LiFePO4 (commercial) with a variation of the percentage by weight of Nano copper (commercial) 0, 1, 3, 5, 7 wt. % and 5 wt. % CNTs (commercial) and then process in vacuum mixing and film applicator. Testing XRD, SEM and EDX performed on the powder to confirm the phase, grain size and the presence or absence of impurities. Results of XRD and EDX on Nano Cu powder showed that there had been oxidation and formed into CuO and Cu2O, and discovered the existence of impurities elements S of 8.5 wt. %. Phase composition as the result from adding process obtained with analyzing the XRD diffraction pattern showed that the phase formed is LiFePO4 yet found any impurities in the form of Cu4O3 on variations LiFePO4 addition of 80 wt. %, 5 wt. % Cu, 5 wt. % C, and 10 wt. % PVDF. The electrical conductivity of LiFePO4 cathode material was tested by EIS, and the results showed that the electrical conductivity of LiFePO4 increased with the addition of Nano-Cu but not too significant (still on the same order), this is because the effects of oxidation on Cu. On the addition of Nano C and Nano Cu variation there is an increase of 3 order with conductivity value 8.4 x 10-5 S / cm at variations LiFePO4 addition of 80 wt.%, 5 wt.% Cu, 5 wt.% C. The addition of CNTs is more effective in LiFePO4 conductivity increase, compared to the addition of Nano-Cu due to the effects of oxidation on Cu are unavoidable. Cathode material morphology and distribution of CNTs and Nano Cu analyzed using SEM / EDX, showed mixed material on the variation of the addition of Nano Cu quite homogenous, spherical grain structure, while the variation of the addition of Nano Cu and CNTs structures polyhedral grains with a grain size in the range 100-500 nm. This affects the grain structure results in a variation of Cole plot where the addition of Cu is formed semicircle, while the addition of Nano C is not.;Improved of Electrical conductivity of LiFePO4 with the method of adding Cu Nano metal material and CNTs has been done. This method is an attractive option because it is easy and inexpensive in the manufacturing process. Synthesis process is done by mixing the powder LiFePO4 (commercial) with a variation of the percentage by weight of Nano copper (commercial) 0, 1, 3, 5, 7 wt. % and 5 wt. % CNTs (commercial) and then process in vacuum mixing and film applicator. Testing XRD, SEM and EDX performed on the powder to confirm the phase, grain size and the presence or absence of impurities. Results of XRD and EDX on Nano Cu powder showed that there had been oxidation and formed into CuO and Cu2O, and discovered the existence of impurities elements S of 8.5 wt. %. Phase composition as the result from adding process obtained with analyzing the XRD diffraction pattern showed that the phase formed is LiFePO4 yet found any impurities in the form of Cu4O3 on variations LiFePO4 addition of 80 wt. %, 5 wt. % Cu, 5 wt. % C, and 10 wt. % PVDF. The electrical conductivity of LiFePO4 cathode material was tested by EIS, and the results showed that the electrical conductivity of LiFePO4 increased with the addition of Nano-Cu but not too significant (still on the same order), this is because the effects of oxidation on Cu. On the addition of Nano C and Nano Cu variation there is an increase of 3 order with conductivity value 8.4 x 10- 5 S / cm at variations LiFePO4 addition of 80 wt.%, 5 wt.% Cu, 5 wt.% C. The addition of CNTs is more effective in LiFePO4 conductivity increase, compared to the addition of Nano-Cu due to the effects of oxidation on Cu are unavoidable. Cathode material morphology and distribution of CNTs and Nano Cu analyzed using SEM / EDX, showed mixed material on the variation of the addition of Nano Cu quite homogenous, spherical grain structure, while the variation of the addition of Nano Cu and CNTs structures polyhedral grains with a grain size in the range 100-500 nm. This affects the grain structure results in a variation of Cole plot where the addition of Cu is formed semicircle, while the addition of Nano C is not., Improved of Electrical conductivity of LiFePO4 with the method of adding Cu Nano metal material and CNTs has been done. This method is an attractive option because it is easy and inexpensive in the manufacturing process. Synthesis process is done by mixing the powder LiFePO4 (commercial) with a variation of the percentage by weight of Nano copper (commercial) 0, 1, 3, 5, 7 wt. % and 5 wt. % CNTs (commercial) and then process in vacuum mixing and film applicator. Testing XRD, SEM and EDX performed on the powder to confirm the phase, grain size and the presence or absence of impurities. Results of XRD and EDX on Nano Cu powder showed that there had been oxidation and formed into CuO and Cu2O, and discovered the existence of impurities elements S of 8.5 wt. %. Phase composition as the result from adding process obtained with analyzing the XRD diffraction pattern showed that the phase formed is LiFePO4 yet found any impurities in the form of Cu4O3 on variations LiFePO4 addition of 80 wt. %, 5 wt. % Cu, 5 wt. % C, and 10 wt. % PVDF. The electrical conductivity of LiFePO4 cathode material was tested by EIS, and the results showed that the electrical conductivity of LiFePO4 increased with the addition of Nano-Cu but not too significant (still on the same order), this is because the effects of oxidation on Cu. On the addition of Nano C and Nano Cu variation there is an increase of 3 order with conductivity value 8.4 x 10- 5 S / cm at variations LiFePO4 addition of 80 wt.%, 5 wt.% Cu, 5 wt.% C. The addition of CNTs is more effective in LiFePO4 conductivity increase, compared to the addition of Nano-Cu due to the effects of oxidation on Cu are unavoidable. Cathode material morphology and distribution of CNTs and Nano Cu analyzed using SEM / EDX, showed mixed material on the variation of the addition of Nano Cu quite homogenous, spherical grain structure, while the variation of the addition of Nano Cu and CNTs structures polyhedral grains with a grain size in the range 100-500 nm. This affects the grain structure results in a variation of Cole plot where the addition of Cu is formed semicircle, while the addition of Nano C is not.]
Fakultas Teknik Universitas Indonesia, 2015
T43699
UI - Tesis Membership  Universitas Indonesia Library
cover
Guntur Tri Setiadanu
Abstrak :
Telah dilakukan sintesis LiFePO4/C sebagai material katoda baterai lithium ion dengan menggunakan metode hidrotermal dari bahan LiOH, NH4H2PO4, FeSO4.7H2O, carbon black dan sukrosa. Proses hidrotermal dilakukan pada suhu reaktor 180⁰C dengan lama waktu penahanan 20 jam. Penambahan karbon dilakukan dengan 2 cara. Pertama menggunakan sukrosa sebagai sumber karbon yang dilarutkan bersama prekusor dan kedua menggunakan carbon black yang ditambahkan setelah proses hidrotermal sebelum proses kalsinasi. Temperatur kalsinasi divariasikan pada 500, 600 dan 750⁰C selama 5 jam. Proses dekomposisi termal dianalisis menggunakan DTA-TGA analyzer, karakterisasi fasa dilakukan dengan XRD, morfologi dengan SEM/EDX, nilai konduktifitas dan kapasitansi material dengan LCR-EIS, dan performa baterai dengan pengujian charge-discharge menggunakan baterai analyzer. Hasil LiFePO4/C yang murni berbentuk flake berhasil disintesis dengan penambahan carbon black 5 wt%, sedangkan untuk penambahan karbon melalui pelarutan sukrosa masih terdapat pengotor Fe3(PO4)2 pada hasil kalsinasi. Temperatur kalsinasi optimal adalah 750⁰C dengan ukuran kristalit 39,7 nm, tebal butiran flake 80 nm dan besar butiran rata-rata 427 nm. Konduktifitas LiFePO4 murni terukur 5 x 10-7 S/cm dan konduktifitas LiFePO4/C adalah 2,23 x 10-4 S/cm yang dihasilkan dari sampel dengan tambahan carbon black 5wt% kalsinasi 750⁰C. Dari pengujian charge/discharge didapatkan siklus terbaik dihasilkan oleh sampel LiFePO4/C yang dikalsinasi 750⁰C yang stabil dengan tegangan 3,3-3,4 V, kapasitas spesifik dihasilkan pada 0,1 C = 11,6 mAh/g ; 0,3C = 10,78 mAh./g dan 0,5 C = 9,45 mAh/g. ......LiFePO4/C has been succesfully synthesized through hydrothermal method from LiOH, NH4H2PO4, and FeSO4.7H2O as starting materials and either carbon black or sucrose as carbon source used as cathode material for lithium ion batteries. In this work, hydrothermal reaction temperature was at 180C for 20 hours.Carbon sources were added in two routes. Firstly, sucrose solution was mixed with precursor solution before hydrothermal reaction. Secondly carbon black was added after hydrothermal reaction before calcination process. Calcination temperatures were performed at 500, 600, and 750C each for 5 hours. Thermal decomposition process was analyzed using DTA-TGA analyzer, phases and morphological were characterized by using XRD and SEM/EDX measurement, conductivity and electrical capacity were characterized by EIS measurement, and batteries performance were tested with charge discharge testing by battery analyzer. Pure LiFePO4/C flake shaped was successfully synthesized with the addition of 5 wt% carbon black, while the addition of carbon through the dissolution of sucrose still contained impurity from Fe3(PO4)2 in calcination product. Optimal calcination temperature was obtained at 750⁰C with crytallite size of 39.7 nm, flake particles diameter of 80 nm with particles average length of 427 nm. Pure LiFePO4 conductivity was measured to be 5 x 10-7 S/cm and conductivity LiFePO4/C was 2.23 x 10-4 S/cm produced from samples with carbon black addition of 5 wt% and calcined at 750⁰C. Charge/discharge cycles test showed that best battery performance was obtained from the sample with carbon black of 5wt% calcined at 750⁰C, with a stable voltage 3.3 to 3.4 V, specific capacity of 0.1 C = 11.6 mAh/g ; 0.3C = 10.78 mAh./g dan 0.5 C = 9.45 mAh/g.
Depok: Fakultas Teknik Universitas Indonesia, 2015
T43933
UI - Tesis Membership  Universitas Indonesia Library