Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Amalia Sholehah
Abstrak :
Seng oksida (ZnO) merupakan material semikonduktor dengan aplikasi yang sangat luas dalam berbagai bidang seperti elektronik, optoelektronik, fotokatalisis, hingga biomedis. Salah satu aplikasi yang marak diteliti saat ini adalah penggunaan ZnO sebagai lapisan anoda untuk sel surya tersensitasi zat pewarna (dye-sensitized solar cell, DSSC). Dalam pembuatan sel surya, kondisi morfologi natural lapisan semikonduktor oksida sangat berpengaruh pada interaksi penyerapan cahaya. Bentuk morfologi yang baik adalah struktur one-dimensional (1D) yang tersusun secara paralel dan melekat secara vertikal pada substrat kaca konduktif. Akan tetapi, struktur ini tidak mudah didapat pada sintesis dengan metode kimiawi basah. Pertumbuhan nanostruktur dengan arah yang tidak terorientasi akan mengakibatkan rendahnya kristalinitas dan energi celah pita (Eg) yang tinggi. Hal ini dapat menyebabkan rendahnya kemampuan penyerapan zat pewarna (dye) yang memberikan hasil DSSC dengan efisiensi rendah. Pada penelitian ini, dilakukan sintesis nanostruktur ZnO di atas substrat kaca konduktif dengan bahan dasar seng nitrat tetrahidrat (Zn(NO3)2.4H2O, Zn-nitrat) dan heksametilentetraamin (C6H12N4, HMTA). Untuk meningkatkan kestabilan lapisan ZnO di atas substrat, dilakukan penempelan lapisan bibit terlebih dahulu dengan menggunakan metode spin-coating. Lapisan bibit ini dibuat dengan menggunakan larutan yang disintesis pada suhu 0oC. Setelah proses spin-coating, lapisan nanostruktur ZnO ditumbuhkan dengan menggunakan metode chemical bath deposition (CBD). Untuk meningkatkan kristalinitas nanostruktur ZnO, dilakukan proses pasca-hidrotermal, yang terbagi menjadi 2 variasi. Pada variasi pertama, reaksi dilakukan dalam reaktor hidrotermal pada 150oC selama 3 jam. Pada variasi kedua, reaksi dilakukan dalam reaktor tertutup dengan penambahan gas nitrogen (N2) 1 bar pada suhu 100oC selama 1 jam. Hasil penelitian menunjukkan bahwa perlakuan pasca-hidrotermal, menhasilkan lapisan nanostruktur ZnO dengan kristalinitas yang lebih tinggi, ditandai dengan intensitas puncak difraksi yang lebih tajam dibandingkan dengan ZnO hasil as-synthesized. Naiknya kristalinitas tersebut selanjutnya memicu penurunan energi celah pita (Eg) sehingga lapisan nanostruktur ZnO dapat menyerap cahaya pada panjang gelombang yang lebih besar. Selain itu, morfologi yang yang terlihat dari hasil SEM juga menunjukkan perbaikan setelah proses pasca-hidrotermal. Hal ini terlihat orientasi nanostruktur ZnO yang semula tidak beraturan menjadi tegak vertikal. Dalam penelitian ini, diketahui bahwa perbedaan kondisi pasca-hidrotermal menghasilkan pertumbuhan nanostruktur dengan bentuk yang berbeda. Pada variasi pertama, didapat hasil sintesis berupa nanorods ZnO, sedangkan variasi kedua menghasilkan nanorods dan nanotubes ZnO. Nanostruktur ZnO di atas substrat kaca konduktif yang telah dihasilkan selanjutnya digunakan sebagai lapisan anoda pada DSSC. Pada penelitian ini, terlihat bahwa perbedaan variasi proses pasca-hidrotermal mempengaruhi kemampuan penyerapan warna (dye loading). Anoda yang dihasilkan dari proses pasca-hidrotermal yang menggunakan penambahan gas N2 mampu menyerap za pewarna lebih banyak. Hal ini diduga disebabkan oleh adanya struktur nanotubes yang memiliki pori/rongga. Namun demikian, efisiensi tertinggi diraih oleh anoda setelah perlakuan pasca-hidrotermal tanpa gas N2, yaitu sebesar 0,12%. Nilai ini bersesuaian dengan ukuran kristalit yang paling stabil dan energi celah pita paling rendah yang didapat dari perhitungan. Pada penelitian, diameter kristalit dan energi celah pita pada sampel dengan efisiensi tertinggi adalah sebesar ~18 nm dan 3,17 eV.
Zinc oxide (ZnO) is a semiconductor material with a very broad application in many fields, such as electronics, optoelectronic, photocatalyst, and biomedicine. One application that widely examined nowadays is its use as an anode layer for dye-sensitized solar cells (DSSC). In solar cells fabrication, the nature of morphological conditions of the oxide semiconductor layer greatly affect the interaction of light absorption. Good morphology is a one-dimensional structure (1D) arranged in parallel and attached vertically on a conductive glass substrate. However, this structure is not easily obtained in the synthesis via wet chemical method. Nanostructures with non-oriented growth will result in lower crystallinity and higher band gap energy (Eg) is high. This can lead to low dye absorption that results in DSSC with low efficiency. In this study, synthesis of ZnO nanostructures on a conductive glass substrate was carried out using zinc nitrate tetrahydrate (Zn(NO3)2.4H2O, Zn-nitrate) and heksametilentetraamin (C6H12N4, HMTA) at 0oC. To improve the stability of ZnO layer on the substrate, seeding layers were attached using spin-coating method. After the spin-coating process, the seeding layers were grown using chemical bath deposition (CBD). To improve the crystallinity of nanostructured ZnO, post-hydrothermal process was performed afterward. This process was divided into two variations. In the first variation, the reaction is carried out in a hydrothermal reactor at 150oC for 3 hours. While in the second variation, the reaction is carried out in a closed reactor with the addition of 1 bar nitrogen gas (N2) at 100° C for 1 hour. The results showed that post-hydrothermal treatment had improved the ZnO nanostructures layer. The diffraction peaks were sharper than the as-synthesized ZnO nanostructure, indicating higher crystallinity. As a consequence, the band gap energy would be lowered. In addition, the morphology also showed improvement in the nanostructures orientation after a post-hydrothermal process. In this research, the difference in the post-hydrothermal conditions generated different shapes of ZnO nanostructures. The first variation resulted ZnO nanorods, while the second variation produced ZnO nanorods and nanotubes. In this study, it appeared that post-hydrothermal process variations affected the dye loading capacity of the ZnO nanostructure layers. When used as anodes in DSSC, the layer obtained from post-hydrothermal process using N2 gas additions showed a higher dye absorption. The presence of nanotubes structure was assumed to gave this contribution, since this structure had pores / cavities that could absorbed more dyes. However, the highest efficiency achieved by the anode after post-hydrothermal treatment without N2 gas, with the value of 0.12%. This corresponded with the most stable crystallites size and lowest band gap energy obtained from the calculation. In the study, the crystallites size and the band gap energy of this sample were given as ~ 18 nm and 3.17 eV.
Depok: Fakultas Teknik Universitas Indonesia, 2015
D2109
UI - Disertasi Membership  Universitas Indonesia Library
cover
Supriyadi
Abstrak :
Berbagai upaya meningkatkan kapasitas adsorpsi hidrogen pada Carbon Nanotubes CNT banyak dilakukan diantaranya melalui: optimasi struktur, pengaturan unsur doping serta modifikasi pada CNT sehingga diperoleh CNT dengan karakteristik baru, atau material dengan struktur baru. Jenis material nanostruktur yang sekarang banyak menarik perhatian adalah Boron Carbide, Boron Nitride dan Carbon Nitride. Pada penelitian ini model struktur yang dibahas adalah Single-walled Triazine Nanotube SWTNT, SWTNT dengan substitusi Boron, Boron Substituted-Single Walled Triazine Nanotube SWBTNT serta SWTNT substitusi boron dengan doping lithium: Lithium Doped on Boron Substituted Single-walled Triazine Nanotube SWBTLi2NT yang secara struktur maupun aplikasi untuk penyimpanan hidrogen belum banyak dibahas. Pada tahap awal penelitian dilakukan kajian semi empirik untuk mendapatkan diamater optimum untuk menyimpan hidrogen. Diperoleh diameter optimum pada diameter kurang dari 5? atau pada diameter antara 11 ndash; 14 ?. Berdasarkan hasil tersebut selanjutnya dilakukan simulasi adsorpsi hidrogen Single-walled Carbon Nanotube SWCNT dan berbagai material nanostruktur dengan chiralitas 18, 0. Analisa termodinamik yang paling penting dilakukan adalah perhitungan nilai luas permukaan spesifik spesific surface area/SSA. Dari hasil perhitungan berbagai model material diperoleh nilai SSA berturut-turut 2600, 2730 dan 2828 dan 2458 m2/g. Dengan demikian maka dapat diduga modifikasi struktur dengan substitusi/doping logam pada material berbasis karbon akan meningkatkan kapasitas adsorpsi hidrogen. Modifikasi tersebut juga mengidentifikasikan adanya peningkatan energi adsorpsi hidrogen secara signifikan yang besarnya berturut-turut 1,2; 1,97; 2,25 dan 9,7 kkal/mol. Simulasi dinamika mulekular MD memberikan hasil kapasitas adsorpsi pada temperatur ruang berturut-turut sebesar 1,59; 2,17; 2,31 dan 6,31 wt , di tekanan 120 atm. Pada temperatur 233 K kapasitas adsorpsi meningkat menjadi 2,26; 2,96; 3,23 dan 6,82 wt serta 6,1; 6,84; 7,73 dan 8,52 wt pada temperatur 77 K. Untuk memverifikasi hasil simulasi dilakukan perbandingan dengan regresi model adsorpsi isotermal, perbandingan dengan hasil eksperimen, perbandingan dengan perhitungan Density Functional Theory DFT , simulasi Grand Canonical Monte Carlo GCMC serta hasil simulasi MD dari hasil yang telah terpublikasi. Perbandingan dengan perhitungan semi empirik maupun eksperimen, secara umum hasil simulasi lebih tinggi sekitar 10 ndash; 20 . Dengan hasil DFT dan GCMC, hasil MD lebih rendah 10 ndash; 20 dan dengan hasil MD peneliti lain perbedaannya berkisar 5-10. Hasil MD juga menunjukkan adanya kesesuaian dengan model adsorpsi isotermal Langmuir, model isotermal Sips maupun model isotermal Toth dengan nilai koefisien determinasi di atas 0,99 pada temperatur 298 K, di atas 0,95 pada temperatur 233 K dan di atas 0,85 pada temperatur 77 K. Analisa monolayer coverage menunjukkan bahwa tanpa doping lithium daerah yang sanggup dicover tidak melebihi 30 , 40 dan 55 masing-masing pada temperatur 298, 233 dan 77 K. Dengan doping lithium coveragenya naik hingga 300. Dicapai coverage hampir 100 pada temperatur 298, 233 dan 77 K berturut-turut pada tekanan 100, 30 dan 5 atm. Berbagai ukuran termodinamik menunjukkan bahwa tanpa modifikasi sulit bagi SWCNT memenuhi kriteria untuk aplikasi penyimpanan hidrogen. Langkah modifikasi yang dilakukan melalui substitusi dan doping logam merupakan peta jalan yang mengarah untuk didapatkannya material baru yang dapat memenuhi target Departemen Energi Amerika Serikat US DoE . Dengan demikian SWBTLi2NT dapat diusulkan sebagai material jenis baru yang memenuhi berbagai persyaratan untuk aplikasi hydrogen storage. ......Various eff orts have been conducted intensively to increase the hydrogen adsorption capacity of Carbon Nanotubes CNT , such as structure optimization, doping element arrangement and structure modification to obtain new characteristics of CNTs, or newly acquired materials. New types of materials that now attract a lot of attention are Boron Carbide, Boron Nitride and Carbon Nitride. The structural models discussed in this study are Single walled Triazine Nanotube SWTNT, Boron Substituted Single walled Triazine Nanotube SWBTNT and Single walled Triazine Nanotube with substitution of boron and lithium doping SWBTLi2NT which structurally and in application for hydrogen storage has not been much discussed. Based on semi empirical study, it is obtained that the optimum diameter to store hydrogen is diameter less than 5 or diameter between 11 14. From this results, a Single walled Carbon Nanotube SWCNT simulation was performed on chirality 18.0 . The choice of chirality is to assure three dimensional symmetrical properties, when the material type is replaced by a more complex type of material. Based on the results, further simulations were made on various material variations with 18, 0 chirality The first thermodynamic analysis performed was calculation of SSA value and in various models the material obtained the value of SSA respectively of 2600, 2730 and 2828 and 2458 m2 g. Thus it can be predicted that structural modification by substitution and doping on carbon based materials will increase the hydrogen adsorption capacity. The modification also identified a significant increase in hydrogen adsorption energy of 1.2, 1.97, 2.25 and 9.7 kcal mole. The molecular dynamics simulation gives the result of adsorption capacity at room temperature is respectively of 1.59, 2.17, 2.31 and 6.31 wt . At temperature of the adsorption capacity increased to 2.26, 2.96, 3.23 and 6.82 wt while 6.1, 6.84, 7.73 and 8.52 wt at a temperature of 77 K. To verify the simulation results, a comparison with the regression of the isothermal adosrpsi model, the comparison with the experimental results, the comparison with Density Functional Theory DFT calculations, Grand Canonical Monte Carlo GCMC simulations and MD simulation results from published reports were hold. In general comparison with semi empirical and experimental calculations, the simulation result is higher about 10 20 . With DFT and GCMC results, MD results were lower about 10 20 and with the other MD results about 5 10 . The MD results also indicate compatibility with the Langmuir isothermal model of adsorption, Sips Langmuir isothermal model and Toth Langmuir isothermal model with a coefficient of determination above 0.99 at a temperature of 298 K, above 0.95 at a temperature of 233 K and above 0.85 at a temperature of 77 K. The monolayer coverage analysis showed that without lithium doping the covered area did not exceed 30 , 40 and 55 respectively at temperatures of 298, 233 and 77 K. With lithium coverage doping rise up to 300 and achieved coverage of nearly 100 at 298, 233 and 77 K temperatures at 100, 30 and 5 atm pressure, respectively. The various thermodynamic properties showed that without modification it is to difficult for SWCNT to meet the criteria for hydrogen storage applications. The modification step made through substitution and metal doping is a roadmap that leads to the discovery of new materials that can meet the US Department of Energy US DoE targets. Thus SWBTLi2NT can be proposed as a new type of material that meets various requirements for hydrogen storage applications.
Depok: Fakultas Teknik Universitas Indonesia, 2017
D2287
UI - Disertasi Membership  Universitas Indonesia Library